• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • Tagged with
  • 12
  • 12
  • 12
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of Cooperativity between Statistical Rebinding and the Chelate Effect on DNA Scaffolded Multivalent Binders as a Method for Developing High Avidity Ligands to target the C-type Lectin Langerin

Bachem, Gunnar 29 April 2021 (has links)
Aufgrund der Fähigkeit von Langerhans Zellen, welche den C-Typ Lektin (CTL) Rezeptor Langerin exprimieren, Antigene zu internalisieren und T-Zellen zu präsentieren, wurde Langerin als attraktives Ziel für neue Immunotherapien erkannt. Langerin kann Pathogene wie z.B. Viren erkennen, die zur Erhöhung der Avidität Kohlenhydratliganden multivalent präsentieren, da die monovalenten Kohlenhydratliganden nur niedrige Affinitäten für Langerin aufweisen. Die natürlichen monovalenten Kohlenhydratliganden besitzen nur niedrige Affinitäten für Langerin. Inspiriert durch die Natur stellt Multivalenz eine Strategie zur Überwindung der schwachen CTL-Kohlenhydrat-Wechselwirkung dar. Im Gegensatz zur hochmultivalenten Präsentation von Liganden mit undefinierter Anordnung hat sich diese Arbeit zum Ziel gesetzt auch die Ökonomie der Liganden zu optimieren, indem Liganden auf einer DNA Gerüststruktur so präsentiert wurden, dass sie die Distanz zwischen den Bindungstaschen des Homotrimers Langerin wiederspiegeln. Eine Untersuchung der relevanten multivalenten Bindungsmechanismen führte zu einer Anordnung der Liganden, die sowohl statistisches Rebinding als auch den Chelate Effekt einbezog. Der Rebinding Effekt wurde als Mittel erkannt, dass nicht nur die Avidität des Liganden an einer Bindungstasche erhöht, sondern auch ausgenutzt werden kann, um den Chelate Effekt zu amplifizieren. Diese Methode stellt eine Möglichkeit dar niedrige oder nicht vorhandene Multivalenzeffekte bei der bivalenten Präsentation von Liganden zu überwinden, wenn hochaffine Liganden nicht zur Verfügung stehen. Eine Kombination dieser Strategie mit der Entwicklung eines neuen selektiven Liganden für Langerin führte zu dem stärksten bekannten Langerinbinder (IC50 = 300 nM). Die Ligand-PNA-DNA Konstrukte wurden selektiv von Langerin exprimierenden Zellen bei nanomolaren Konzentrationen internalisiert und stellen ein System dar, welches in Zukunft für den Transport von Beladungen Anwendung finden könnte. / Targeting the C-type lectin (CTL) langerin has received increasing attention as a novel immunotherapy strategy due to the capacity of Langerhans cells, which express langerin, to endocytose and cross-present antigens to T-cells. Langerin recognizes pathogens such as viruses, which present carbohydrates in a multivalent fashion to increase avidity as the monovalent carbohydrate ligands only display low affinity for langerin. Inspired by nature, multivalency has therefore been a key tool for overcoming the low affinities of CTL-carbohydrate interactions. In contrast to highly multivalent ligand presentation with undefined arrangements this work strove to optimize ligand economy by designing bivalent ligands that take the distance between the binding sites of the homotrimeric langerin into consideration by precise arrangement of ligands on DNA-based scaffolds. Studying the multivalent mechanisms at work led us to the design of ligands that take both statistical rebinding and the chelate effect into account. The rebinding effect was recognized as a tool that not only increases ligand avidity at a single binding site but in addition can be exploited to amplify the chelate effect. This method provides a solution for overcoming the low or non-existing multivalency effects when bivalently presenting low affinity ligands on a rigid scaffold if high affinity ligands are unavailable. A combination of this arrangement strategy with the development of a first langerin selective glycomimetic ligand led to the most potent molecularly defined langerin binder to date (IC50 = 300 nM). The ligand-PNA-DNA constructs were selectively internalized by langerin expressing cells at nanomolar concentrations and constitute a delivery platform for the future transport of cargo to Langerhans cells.
2

Engineered Neoglycoproteins as Tools to Study Biologically Relevant Multivalent Interactions

Klenk, Simon 10 January 2019 (has links)
In der vorliegenden Arbeit diente das Kapsid der Bakteriophage Qbeta als multivalentes Gerüst und ermöglichte die Bildung eines monodispersen multivalenten Systems, welches mit Homopropargylglycin als unnatürliche Aminosäure modifiziert wurde. Das so eingeführte Alkin ermöglichte kupferkatalysierte Alkin-Azid-Cycloaddition zur Anbindung von Sialinsäuregrupen. Die entsprechende Synthese der hierzu kompatiblen Azid-modifizierten Sialinsäurederivate war eine der Hauptaufgaben dieser Arbeit. Zu diesem Zweck wurde das einfach zugängliche 5-N-Acetyladamantanylthiosialosid als Glykosylierungsdonor in der alpha-selektiven Synthese von Sialosiden evaluiert. Eine effiziente Aktivierung dieses Donors wurde unter optimierten Bedingungen bei -78°C mit N-Iodsuccinimid und Trifluormethansulfonsäure erreicht, was zu hohen alpha-Selektivitäten und Gesamtausbeuten der gewünschten Sialoside führte. Insbesondere Azidoethylenglykol-verknüpfte Sialinsäuren wurden synthetisiert, die für nachfolgende Biokonjugationsreaktionen an das Qbeta-Kapsid verwendet wurden. Die so dargestellten Sialinsäure-modifizierten Qbeta-Kapsidpartikel wurden dann eingehend mit Hilfe mehrerer biophysikalischer und biologischer Tests hinsichtlich ihrer Fähigkeit an Hämagglutinin zu binden und eine Influenza-Infektion zu inhibieren charakterisiert. Niedrige nanomolare Affinitäten wurden in diesen Assays gemessen. Eine sehr effiziente Infektionshemmung in vergleichbaren Konzentrationsbereichen konnte in einem in vitro Zell-, sowie einem in vivo Maus- als auch einem menschlichen ex vivo Modellsystem beobachtet werden. Verschiedene pathologisch relevante Influenzastämme konnten über die hier vorgestellte Strategie ebenfalls gebunden werden. Die monodisperse und definierte Struktur des Qbeta-Gerüsts erlaubte es außerdem ein theoretisches Modell der zugrundeliegenden Bindungsmodi zu erstellen. / In this thesis, the bacteriophage Qbeta capsid served as a multivalent scaffold and facilitated the generation of a monodisperse multivalent system which was modified with homopropargylglycine as an unnatural amino acid. The introduced alkyne enabled copper-catalyzed alkyne-azide cycloaddition to attach sialic acid groups. The corresponding synthesis of the compatible azide-modified sialic acid derivatives was one of the main tasks of this work. For this purpose, the straightforwardly accessible 5-N-acetyladamantanyl thiosialoside was evaluated as a glycosylation donor in the alpha-selective synthesis of sialosides. Efficient activation of this donor was achieved under optimized conditions at -78°C with N-iodosuccinimide and trifluoromethanesulfonic acid which led to high alpha selectivities and overall yields of the desired sialosides. Particularly azidoethylene glycol-linked sialic acids were synthesized which were used for subsequent bioconjugation reactions to the Qbeta capsid. These synthesized sialic acid-modified Qbeta capsid particles were then thoroughly characterized by multiple biophysical and biological assays regarding their ability to bind to hemagglutinin and to inhibit influenza infection. Low nanomolar affinities were measured in these assays. A very efficient infection inhibition in a comparable concentration range was observed in in vitro cellular, in vivo mouse and ex vivo human model systems. Several pathologically relevant influenza strains could also be bound with the strategy presented here. The monodisperse and defined structure of the Qbeta scaffold additionally allowed for the establishment of a theoretical model describing the underlying binding modes.
3

Evaluation of the Antiviral Effect of Polyglycerols Functionalized with Sialic Acid on Influenza Virus

Stadtmüller, Marlena Nastassja 12 October 2021 (has links)
Ein vielversprechender Ansatz zur Verhinderung von Infektionen mit Influenzavirus ist die kompetitive Inhibition der Virusanhaftung an die Wirtszellen durch Behinderung der Bindung des viralen Hemagglutinin (HA) an sialylierte Glykanrezeptoren. Allerdings erschwert die hohe Variabilität des HA die Entwicklung von universellen Sialinsäure (SA)-basierten Virostatika. In dieser Arbeit wurde der antivirale Effekt von mit SA funktionalisierten Polyglycerolen (PGs) auf Influenza A Viren (IAV) evaluiert. SA-basierte PGs waren nur bei der Inhibition einer geringen Anzahl an IAV Stämmen effektiv. Um die molekulare Basis für diese Beschränkung zu ergründen, wurden mittels Serienpassagen IAV Mutanten selektiert, die gegen sialyliertes PG resistent waren. Es entwickelten sich drei unabhängige resistente Virusvarianten, die einen einfachen bzw. doppelten Aminosäuren-Austausch in der HA RBS aufwiesen. Durch Hemagglutinations-Elution, Einzel-Virus Kraft-Untersuchungen und Glykanarray Analysen konnte eine verringerte Rezeptorbindungsstabilität sowie ein verändertes Rezeptorbindeprofil für diese Virusvarianten gezeigt werden. Interessanterweise wurden drei unterschiedliche Fälle von Virusbindung und Inhibition beobachtet: 1) Virales HA wurde vom PG gebunden und die Virusreplikation inhibiert, 2) virales HA wurde vom PG gebunden ohne Inhibition der Virusreplikation und 3) Virales HA wurde nicht vom PG gebunden und es gab keine Inhibition. Diese Ergebnisse suggerieren, dass es eine Mindestanforderung an die Affinität oder Avidität für eine effektive kompetitive Inhibition von HA gibt. Durch modifizierte PGs, die Sialyllaktose statt SA und einen Amidlinker enthielten, konnte das Potential von PGs als breite IAV Inhibitoren demonstriert werden. Zusammenfassend bieten die Ergebnisse dieser Arbeit wertvolle Einblicke in die Entwicklung von Resistenzen in IAV gegen Inhibitoren des HA-Attachment und in das strategische Design von sialylierten mutlivalenten Inhibitoren gegen IAV. / A promising approach to block influenza virus infections is competitive inhibition of virus attachment to host cells by interfering with binding of the viral surface protein hemagglutinin (HA) to sialylated glycan receptors. However, the high structural and genetic variability of the viral HA has hampered the development of universal sialic acid (SA)-based antivirals. Here, the antiviral effect of biocompatible Polyglycerols (PGs) functionalized with SA on influenza A virus (IAV) was evaluated. PG compounds were only effective at inhibiting a narrow spectrum of IAV strains. To elucidate the molecular basis for this restriction, PG-resistant IAV mutants were selected using serial passaging. Three independent resistant variants developed with single or double amino acid changes mapping to the HA RBS. By employing hemagglutination elution, single-virus force measurements and glycan array analyses, a reduced receptor binding stability as well as an altered receptor binding profile of mutant viruses was shown. Intriguingly, three different cases of virus binding and inhibition were observed using Cy3-labeled compound: 1) viral HA was bound by the compound and resulted in inhibition of replication, 2) viral HA was bound by the compound but replication was not inhibited and 3) viral HA was not bound by the compound and no inhibition occurred. These results suggest that there is an affinity or avidity requirement for effective competitive inhibition of HA attachment. The suitability of PGs as IAV inhibitors with potential for broad activity was demonstrated by a modified PG incorporating sialyllactose instead of SA and an amide linkage covering an extended spectrum of inhibited IAV strains. Taken together, results described in this thesis provide valuable insights into the development of resistance against inhibitors of HA attachment in IAV and into the strategic design of sialylated, multivalent inhibitors aiming at broad activity against influenza viruses.
4

Host cell invasion by influenza A virus / studies at the single-virus level ; identification and evaluation of potential antiviral targets

Sieben, Christian 30 May 2013 (has links)
Influenzaviren müssen in die Wirtszelle aufgenommen werden, um dort ihr Genom freizusetzen und ihre Replikation mit Hilfe des Reproduktionsapparats der Zelle einzuleiten. Der komplexe Replikationszyklus der Influenza A Viren ist noch nicht vollständig verstanden. Er beginnt mit der Bindung des viralen Hämagglutinins (HA) an Sialinsäure (SA) auf der Zelloberfläche der Wirtszelle. In dieser Arbeit wurde die Virusbindung an Zellen mit unterschiedlicher Rezeptorkomposition verglichen. Dabei konnte gezeigt werden, dass für die zelluläre Spezifität die Präsentation des Rezeptors innerhalb der Plasmamembran der Zelle eine größere Rolle spielt als die Struktur des Rezeptorglykans selbst. Des Weiteren deuten die Beobachtung sehr kleiner Kräfte und ein stufenweises Öffnen von Bindungen auf eine multivalente Interaktion hin. Multivalenz wird oft in biologischen Bindungsprozessen beobachtet und kann Bindungskräfte enorm verstärken. Basierend auf diesen Ergebnissen wurden inhibitorische Nanopartikel entwickelt, die die natürliche Zelloberfläche als hochaffine Bindungsalternative imitieren. Verschiedenartige Nanopartikel wurden evaluiert und konnten die Virusaktivität um mehr als 80 % hemmen. Nach der Bindung wird das Virus durch Endozytose in die Zelle aufgenommen. Durch spezifische Virusmarkierung und gleichzeitiger Expression von zellulären Markerproteinen wurde der Transport einzelner Viren in lebenden Zellen verfolgt. Dabei konnte gezeigt werden, dass das Virus sowohl durch frühe, als auch durch späte Endosomen wandern muss, um sein Genom erfolgreich in das Zytoplasma zu entlassen. Außerdem verzögert das Virus die endosomale Ansäuerung um eine optimale Aufenthaltsdauer im Endosom und die lokalisierte Fusion in der Nähe des Zellkerns zu gewährleisten. Pharmakologisches Eingreifen in diese Prozesse konnte zudem weitere kritische Faktoren identifizieren, die die Effizienz der Virusinfektion stark beeinflussen. / Influenza virus must enter a host cell to deliver its genome, use the cells reproductive machinery and eventually initiate its replication. The replication cycle of influenza A virus is very complex and still not fully understood. It generally starts with binding of the viral protein hemagglutinin (HA) to its cellular receptor sialic acid (SA). In this work, virus-cell attachment forces were investigated at the single molecule level using intact virus binding to living cells, a set-up that closely mimics the in vivo situation. Cells of different surface SA composition were compared. It could be shown that the unique presentation of the ligand within the cells plasma membrane, rather than the structure of the receptor-glycan itself, strongly affects cellular specificity. The low binding forces as well as the observation of stepwise unbinding events suggest a multivalent interaction type. Based on this finding, inhibitory nanoparticles mimicking the cell surface were constructed. Different particles were evaluated and shown to efficiently inhibit virus infection by ≥ 80 %. Since many molecular details of multivalent interactions remain poorly understood parameters such as ligand spacing and presentation were varied and revealed that the density of ligands as well as the interacting surface plays critical roles for virus inhibition. Upon attachment, the virus enters the cell by endocytosis. Virus trafficking was followed at the single-virus level in living cells. The kinetics of virus transport were visualized using fluorescent marker proteins in combination with specific virus labeling. It was found that the virus needs to progress through early and late endosomal compartments in order to efficiently uncoat and release its genome. Further, the virus delays the endosomal acidification to ensure optimal residence time and fusion in the region close to the host cell nucleus. Drug treatment furthermore unraveled critical factors influencing viral infection efficiency.
5

Investigating the impact of carbohydrate and peptide attachment to multivalent scaffolds on influenza inhibition

Adam, Lutz 16 August 2022 (has links)
Hämagglutinin (HA) des Influenzavirus ist eine mögliche Zielstruktur für antivirale Therapeutika. Aus der Menge experimenteller HA-Inhibitoren stechen die kürzlich beschriebenen Q-beta-Sialoside aufgrund ihrer hohen Affinität und akkuraten, multivalenten Abbildung der Rezeptorbindungsstellengeometrie hervor. Anknüpfend an diese Eigenschaften beschreibt die vorliegende Arbeit die Erweiterung der Q-beta-Sialosidplattform durch neuartige Varianten und Anwendungsgebiete. Verschiedene Strategien für die Entfernung von Lipopolysacchariden aus Kapsidproben wurden untersucht, wobei sich das Verfahren der Cloud Point als am besten geeignet herausstellte. Das gereinigte Material war geeignet für in vivo Versuche. Teilsialylierte Kaspidvarianten wurden auf ihre inhibitorische Aktivität untersucht und im Vergleich der Ergebnisse mit statistischen Berechnungen Hinweise auf einen vorherrschend trivalenten Bindungsmodus zwischen Q-beta-Sialosiden und HA gefunden. Die Arbeit beinhaltet die ersten Beispiele heterobifunktionaler Q-beta-Sialoside, die verschiedene Sialinsäureliganden oder Kombinationen aus Zuckern und Fluoreszenzfarbstoffen aufweisen. Die fluoreszenzmarkierten Kapside wurden in Mukus-Mobilitätsstudien angewendet und ihre Undurchgängigkeit der äußeren Mukusbarriere visualisiert. Mehrere Sialinsäureester wurden als potenzielle ladungsmaskierte Liganden für erhöhte Mukusgängigkeit untersucht. Ein zweiter Schwerpunkt der Arbeit war die Entwicklung eines peptidbasierten HA-Inhibitors. Eine Gruppe von aus HA-bindenden Antikörpern und Lactoferrin abgeleiteten Peptiden wurde mit Hilfe der mikroskaligen Thermophorese auf ihre Affinität zu HA oder Influenza A/X31 (H3N2) getestet. Die vorläufigen Resultate weisen auf eine gute Bindung mehrerer Kandidaten hin. Multivalente Peptid-Polymer-Konjugate wurden auf Basis von linearem Polygylcerol niedrigen Molekulargewichts synthetisiert, jedoch zeigte keines eine Inhibierung der getesteten Influenzastämme. / The influenza virus hemagglutinin (HA) attracts much attention as a target widely unexploited by licensed therapeutics. From the numerous experimental HA inhibitors, the recently reported Q-beta sialosides stand out through their affinity and accurate, multivalent reflection of the receptor binding site geometry. Building upon these characteristics, this work expands the variety of the Q-beta sialoside platform with novel variants and explores new areas of application. Several strategies were compared to remove lipopolysaccharides from capsid preparations, determining cloud point extraction as the most suitable. The purified material shown to be suitable for in vivo experiments. The inhibitory activities of partially sialylated capsids were compared to statistical models to obtain evidence for the prevalence of trivalent interactions between Q-beta sialosides and HA. Moreover, this work contains the first examples of heterobifunctional Q sialosides, bearing multiple sialic acid (SA) ligands or combinations of sugars and fluorescent dyes. Fluorescently labeled Q-beta sialosides were applied in mucus mobility studies to visualize their entrapment in the outer mucus layer. Several SA esters were examined as potential masked-charge ligands to increase mucus permeation. A second focal point of the thesis was the design of a novel, peptide-based HA inhibitor. A library of peptides derived from HA-binding antibodies and lactoferrin was investigated using microscale thermophoresis for binding to recombinant HA or influenza A/X31 (H3N2) concentrate. Preliminary results indicated good affinity for some candidates. Multivalent polymer-peptide conjugates of several peptides were synthesized by immobilization on low molecular weight linear polyglycerol. However, none of the conjugates was able to inhibit influenza strains A/X31 (H3N2) or A/PR8 (H1N1) in a hemagglutination inhibition test.
6

Chemoselective conjugation of biological active peptides to functional scaffolds

Glanz, Maria 30 July 2019 (has links)
Peptide bilden eine einzigartige Klasse von Biomolekülen. Auf Grund ihrer komplexen Struktur sind sie in der Lage hochspezifisch an Zielmoleküle zu binden und können darüber hinaus bioaktive Eigenschaften aufweisen. In dieser Dissertation wurden verschiedene Anwendungen, für die biologisch aktive Peptide genutzt werden können untersucht und darüber hinaus die Konjugation ungeschützter Peptide an funktionelle Gerüstmoleküle betrachtet. Die spezifischen Bindungseigenschaften eines Hemagglutinin bindenden Peptids konnten durch deren multivalente Präsentation auf einem Polymer-Nanopartikel genutzt werden, um einen hochwirksamen Virus-Eintritts-Blocker zu synthetisieren. Außerdem wurde in dieser Dissertation eine neuartige chemoselektive Konjugation zwischen ungeschützten zyklischen Peptiden und Proteinen erforscht, basierend auf der Staudinger Phosphonite Reaktion. Die kovalente Bindung zwischen Proteinen und Peptiden ermöglichte die zellulären Aufnahme und zytosolische Verteilung des konjugierten Proteins. Die neuartige Staudinger induzierte Thiol Addition konnte darüber hinaus für die intramolekulare Makrozyklisierung von Peptiden eingesetzt werden, wodurch die biologische Aktivität der Peptide gesteigert wurde. Dies konnte anhand von zyklischen zellpenetrierenden Peptiden, als auch in der Stabilisierung der helikalen Struktur eines peptidischen Protein-Protein-Interaktions Inhibitors gezeigt werden. Des weiteren wurde eine bioreversible chemoselektive Konjugationsmethode untersucht, basierend auf der O-Alkylierung von Carbonsäuren, um eGFP mit zyklischen zellpenetrierenden Peptiden zu markieren. Erste Schritte zur Evaluierung der entstandenen Konjugate wurden unternommen. Zusammengenommen konnte die Vielfältigkeit bioaktiver Peptide in mehreren Anwendungen gezeigt werden, mit besonderem Augenmerk auf die Erweiterung der Konjugationsmethoden für ungeschützte Peptide an funktionale Trägermoleküle. / Synthetic peptides are a unique class of biomolecules. Due to their complex structure they can bind targets in a highly specific manner and can furthermore exhibit unique properties. Even though they are complex in structure, they are straightforward synthetically accessible. This thesis evolves around the many different aspects, in which biological active peptides can be used, from specific binders to cell penetration tags. Furthermore, the site specific and chemoselective conjugation of an unprotected peptide to a functional scaffold has been addressed. The binding properties of peptides could be used to generate a highly potent virus entry blocker from a viral-membrane-protein binding peptide, which was displayed multivalently on a polymeric nanoparticle. Furthermore, this thesis explored a novel chemoselective reaction, based on the Staudinger phosphonite reaction to conjugate cyclic peptides to eGFP. The covalent attachment of the peptidic ligand promoted efficiently the cellular uptake of protein and its cytosolic distribution. The novel Staudinger induced thiol addition cascade was further successfully used in an intramolecular reaction to macrocyclize peptides in order to induce bioactivity. This could be shown for the synthesis of cyclic cell penetrating peptides, as well as to stabilize the helical structure of a peptidic protein-protein interaction inhibitor. Furthermore, a bioreversible chemoselective conjugation based on a diazo building block, was used to label eGFP with cyclic cell penetrating peptides. First steps to evaluate the potency in vitro were undertaken. Taken together, the versatility of bioactive peptides was demonstrated in multiple applications and the tools to conjugate unprotected peptides to functional scaffolds was extended by the Staudinger induced thiol addition.
7

Binding forces in metallo-supramolecular coordination compounds

Gensler, Manuel 15 March 2017 (has links)
Multivalente Wechselwirkungen sind in diversen biomolekularen und supramolekularen Systemen anzutreffen. Gewöhnlich werden sie durch ihre thermische Stabilität charakterisiert. Doch auch das mechanische Reißverhalten ist relevant: Ein System mit großer Reißlänge (Verformbarkeit) weist zwar eine geringere Reißkraft auf, kann aber besser auf äußere Einflüsse ohne Bindungsbruch reagieren. Daher besteht ein zunehmendes Interesse an Modellen zur Vorhersage der mechanischen Stabilität multivalenter Wechselwirkungen. Einzelmolekül-Kraftspektroskopie (SMFS) ist eine nützliche Methode, um den Reißprozess nichtkovalenter Wechselwirkungen zu studieren. Im Rahmen dieser Dissertation wurden mono- und bivalenten Pyridine, komplexiert und verbunden durch Cu(II) und Zn(II), entworfen und untersucht. Die drei bivalenten Pyridine wiesen unterschiedlich flexible Rückgratstrukturen auf (flexibel, teilflexibel, steif). Überraschenderweise wurde ein anderer Trend für die Verformbarkeiten gemessen (flexibel > steif > teilflexibel). Durch Vergleich von experimentellen Daten mit ab-initio Berechnungen konnten komplexe Reißmechanismen vorgeschlagen werden: Das Lösungsmittel war entscheidend und führte zu wasserverbrückten Zwischenprodukten, was die Verformbarkeit aller Systeme stark erhöhte. Im bivalente System mit teilflexiblem Rückgrat, koordiniert durch Cu(II), rissen beide Bindungen gleichzeitig bei vergleichsweise großen Kräften. Die beiden anderen Systeme mit Cu(II) wurden in zweistufigen Prozessen voneinander getrennt, was kleinere Reißkräfte zur Folge hatte. Insbesondere das flexible System war zwar thermisch stabiler, brach aber leichter als das monovalente System. Damit wurde zum ersten Mal der große Einfluss des Rückgrats, bei sonst gleicher Art von Wechselwirkung, auf die mechanische Stabilität bivalenter Wechselwirkungen gezeigt. Außerdem ist das entwickelte Modellsystem sehr nützlich für weiterführende Untersuchungen in biologisch relevanten wässrigen Lösungsmitteln. / Multivalent interactions are ubiquitous in biomolecular and supramolecular systems. They are commonly characterized by their thermal stability in terms of average bond lifetime or equilibration constant. However, also mechanical stabilities are relevant: A system with high rupture length (malleability) has a lower rupture force, but can more easily adopt to external constraints without rupture. Thus it is of ever-increasing interest to find appropriate models that allow predictions on the mechanical stability of multivalent interactions. Single-molecule force spectroscopy (SMFS) is a powerful tool to study the rupture process of non-covalent interactions. In the present thesis, a comprehensive study on the mechanical stability of bivalent pyridine coordination compounds with the metal ions Cu(II) and Zn(II) was performed. Surprisingly, three different backbone flexibilities (high, intermediate, low) did not correlate with the measured malleabilities (high > low > intermediate). Instead, comparison between experimental results and ab-initio calculations revealed more complex underlying rupture mechanisms: Due to the aqueous environment, hydrogen bound complexes were formed and important intermediate structures that strongly increased malleabilities. Both interactions of the intermediately flexible bivalent system with Cu(II) broke simultaneous, yielding comparatively large rupture forces. The bivalent interactions of high and low backbone flexibility with Cu(II) broke stepwise at smaller forces. Although being thermally more stable, the highly flexible system even broke at lower forces than the monovalent system. Thereby it was shown for the first time, that rupture forces of similar systems can be tuned over a broad range, just by changing the connecting backbone structure. Furthermore, the developed approach is a rich toolkit to study further the balanced interplay between rupture force and malleability in biologically relevant aqueous solvents.
8

Multivalency in the interaction of biological polymers

Reiter-Scherer, Valentin D. 14 September 2020 (has links)
Diese Dissertation konzentriert sich auf die Untersuchung multivalenter Wechselwirkungen zwischen Hämagglutinin (HA) sowie Neuraminidase (NA) zweier Stämme des Influenzavirus (H1N1 und H3N2) und dem zellulären Liganden Sialinsäure (SA) unter Verwendung von Rasterkraftmikroskopie und Einzelmolekülkraftspektroskopie (SMFS). Bindungskräfte sowie Dissoziations- und Assoziationskinetiken, zusammen mit den intermolekularen Potentiallandschaften wurden, nach bestem Wissen erstmalig, auf Einzelmolekülebene mittels SMFS quantifiziert. Zu diesem Zweck wurden mono- und multivalente SA-Liganden (SAPEGLA und dPGSA) eingesetzt. Abweichungen der experimentellen Kraftspektren vom klassischen Kramers-Bell-Evans-Modell vorhergesagten Verhalten wurden durch das Friddle-Noy-De Yoreo-Model berücksichtigt. NA beider Virusstämme zeigte trotz ähnlicher Bindungskräfte eine stabilere Bindung mit SA als HA und dissoziierte 3 – 7 mal langsamer. Es wird vermutet, dass die höhere Stabilität die geringere Oberflächendichte von NA auf der Virushülle im Vergleich zu HA ausgleicht. Die Bindungskräfte eines SAPEGLA-Clusters nehmen mit der Anzahl der Bindungen und die Dissoziationskinetik folgt dem theoretisch vorhergesagten Trend. Die Dissoziationsrate von NA ist etwa 6-mal höher ist als ihre katalytische Rate, weshalb Mehrfachbindungen zur Spaltung von SA erforderlich sind. Die Dissoziationsrate von N1 in der gleichen Größenordnung wie die von H3 und es wird vermutet, dass derartige Ähnlichkeiten die Übertragbarkeit des Virus begünstigen. Darüber hinaus wird gezeigt, dass die thermische Stabilität von HA-dPGSA höher ist als von HA-SAPEGLA und im Bereich von 3 - 4 Einzelbindungen liegt, was für NA-dPGSA nicht beobachtet werden konnte. Daher bindet dPGSA spezifisch und kooperativ multivalent an HA. Kompetitive Bindungstests zeigen, dass SMFS zum Screening von antiviralen Inhibitoren verwendet werden und Zugang zu deren Design auf Einzelmolekülebene liefern könnte. / This thesis focuses on studying multivalent interactions between influenza virus hemagglutinin (HA) as well as neuraminidase (NA) of two viral strains (H1N1 and H3N2) and the cellular ligand sialic acid (SA) by using scanning force microscopy and single molecule force spectroscopy (SMFS). Unbinding forces as well as dissociation and association kinetics together with the free energy landscapes were, to the best knowledge for the first time, individually quantified on the single molecule level using SMFS. To this extent, designed synthetic monovalent (SAPEGLA) and multivalent (dPGSA) SA displaying ligands were employed. Surprisingly, the experimental force spectra did not show the log-linear trend predicted by the classical Kramers-Bell-Evans model, but rather follow the more recent Friddle-Noy-De Yoreo model. NA of both viral strains forms a more stable bond with SA than HA, and dissociates 3 to 7 times slower. It is reasoned that the higher stability compensates for the lesser amount of NA compared to HA that is typically found on the viral envelope. The unbinding forces of the cluster of SAPEGLA increased gradually with the number of bonds in the cluster and the dissociation kinetics follow the theoretically predicted trend. The dissociation rate of NA was found to be about 6 times higher than its catalytic rate, indicating that multiple bonds are needed for cleavage of SA. The dissociation rate of N1 is on the same order as that of H3, suggesting that these similarities between the two strains favor transmissibility. The thermal stability of the HA-dPGSA bond is higher than the HA-SAPEGLA reaching that of three to four single bonds, proving specificity and cooperativity. Such an enhancement could not be observed for the binding of NA. This thesis also shows that SMFS could be used as a tool to screen antiviral inhibitors in competitive binding assays, which may contribute insight into the design of antiviral inhibitors on the single molecule level.
9

Influenza A inhibierende Nanopartikel - zwischen der Optimierung der Struktur und der Ausbildung von Resistenzen

Hilsch, Malte 18 December 2024 (has links)
Influenza A Viren (IAV) infizieren die Epithelzellen unserer Atemwege und stellen ein weltweites Gesundheitsproblem dar. Die Infektion beginnt mit der Bindung an Sialinsäure (SA) auf der Wirtszelloberfläche. Zwischen einem SA-Molekül und dem viralen Oberflächenprotein Hämagglutinin (HA) kommt es dabei zur Interaktion durch nicht kovalente Bindung. Die Inhibierung dieses entscheidenden Schrittes des Infektionszyklus durch Präsentation eines kompetitiven Binders ist ein möglicher Ansatz für ein antiviral wirkendes Mittel. Das Prinzip, mit dem IAV an Zellen binden, ist die Multivalenz. Detailliertes Wissen zur Multivalenz, speziell zur HA-SA-Interaktion, ist für eine effektive IAV-Inhibition von Nöten. Diese Arbeit untersucht und charakterisiert die HA-SA-Interaktion auf zwei unterschiedlichen Wegen. Wird SA auf einer ausgewählten Gerüststruktur funktionalisiert, kann es zu einer multivalenten Anordnung des IAV-Rezeptors kommen. Derartige multivalente Nanopartikel (NP) wurden in Bindungsstudien hinsichtlich ihres Potenzials charakterisiert IAV effektiv zu binden und zu inhibieren. Die Effektivität und die damit einhergehende Stabilität der HA-SA-Interaktionen der getesteten NP, die auf drei verschiedenen Gerüststrukturen basieren (Coiled-Coil-Peptid, PNA-DNA-Strang, Polyglycerolkomplex), hängt von der Verteilung elektrostatischer Oberflächenladungen und der Flexibilität der Gerüststruktur ab. Im zweiten Teil der Arbeit wurden Veränderungen auf Seiten des HAs analysiert. Zwei IAV mit Mutationen in der HA-Bindetasche, sowie das Wildtypvirus wurden in Messungen mittels Einzel-Virus-Kraft-Spektroskopie hinsichtlich ihres Bindungsverhaltens an SA charakterisiert. Die Daten belegen, dass die Verteilung elektrostatischer Oberflächenladungen im HA Einfluss auf die HA-SA-Interkation hat. Alle Ergebnisse zusammengenommen liefern neue Erkenntnisse über die Einflussnahme der HA-SA-Interaktion und wie daraus abgeleitet multivalente Nanopartikel weiter optimiert werden können. / The Influenza A virus (IAV) infects epithelial cells of the human respiratory tract and represents a global health problem. Every infection starts with virus binding on sialic acid (SA) displayed on the host cell surface. This step is characterized by interaction between the viral surface protein hemagglutinin (HA) and sialic acid (SA) that leads to a non-covalent binding. Inhibition of this crucial step of viral infection cycle by presenting a competitive binder to IAV is one approach utilized during the design of antiviral compounds. IAV binds specifically to cells by using the principle of multivalency. Targeting an effective virus inhibition requires detailed knowledge about the binding mechanism, especially about the HA-SA-interaction. This work focuses on the evaluation and characterization of the HA-SA-interaction following two different approaches. In case SA is functionalized on an appropriate scaffold structure, the IAV receptor can arrange in a multivalent fashion. These multivalent nanoparticles (NP) have been studied regarding their potential to effectively bind and inhibit IAV. This potential is directly linked to the stability of the HA-SA-interactions of the tested NPs, which are based on three different scaffold structures (coiled-coil peptide, PNA-DNA-strand, a complex of polyglycerols) and depends on the distribution of electrostatic surface charges and the flexibility of the scaffold structure. The second part of this thesis analyzed changes at HA. The wildtype virus and two IAVs comprising each a mutation in the binding pocket of HA were characterized regarding their binding behavior by single-virus-force-spectroscopy. Results revealed that the arrangement of electrostatic surface charges on HA affecting the HA-SA-interaction. Taken together, all results provide new and important insights into the dependence of the HA-SA-interaction and how this knowledge can be used to further optimize multivalent NPs.
10

DNA-gesteuerte Multivalenz: Untersuchungen zur Reichweite der Bivalenz und Anwendungen in der Assemblierung bi- und multivalenter Peptidkonjugate

Dubel, Natali 01 July 2019 (has links)
Multivalente Wechselwirkungen spielen sowohl in der Natur als auch für die Konstruktion hochaffiner Binder eine wichtige Rolle. In dieser Arbeit wurde die Grenze der Bivalenz in Bezug auf den Bindungsabstand, die monovalente Interaktionsstärke und die Flexibiltät des Gerüsts untersucht. Die Modifizierung von DNA mit Cucurbit[7]uril und zwei verschiedenen Adamantananaloga (Ad1 und Ad2) sowie die Verwendung verschiedener Template, ermöglichte die Konstruktion diverser bivalenter Modellsysteme. Die Ergebnisse zeigten eine Distanzabhängigkeit des bivalenten Effekts, der mit dem Bindungsabstand abnahm. Im Gegensatz zum schwächeren Binder (Ad2), war der stärkere Binder (Ad1) in der Lage auch noch bei großen Abständen von einer bivalenten Verstärkung zu profitieren. Somit besteht eine Abhängigkeit des bivalenten Effekts von der monovalenten Bindungsstärke. Mit diesem System wurde anschließend untersucht, unter welchen Bedingungen bivalente Systeme multimolekulare Strukturen ausbilden. Es konnte gezeigt werden, dass verbrückende Strukturen nur bei hohen Konzentrationen und bei Abwesenheit eines bivalenten Effekts vorliegen können. Im zweiten Teil dieser Arbeit wurde ein bispezifischer Binder auf seine Affinität, Selektivität und auf seinen Einfluss auf die Rezeptoraktivität untersucht. Dafür wurden Oligonukleotide mit Cilengitid, welches αvβ3-Integrin binden kann, und mit einem Peptoid, welches VEGFR2 binden kann, modifiziert. Durch Verwendung verschiedener Template konnten bispezifische Binder mit unterschiedlichen Ligandenabständen konstruiert werden. Messungen an HUVEC-Zellen ergaben eine höhere Affinität der bispezifischen Binder im Vergleich zu den monospezifischen. ELISA-Messungen ergaben eine distanzabhängige Aktivierung oder Deaktivierung der Phosphorylierung von VEGFR2. Es konnte somit ein Modellsystem konstruiert werden, mit dem die Rezeptoraktivität gesteuert werden konnte. / Multivalent interactions play an important role in nature and are also used to construct high-affinity binders. In this work the limit of bivalency based on binding distance, flexibility of the system and monovalent binding-strength was investigated. Modification of DNA with Cucurbit[7]uril (CB[7]) and two adamantane-analogues (Ad1 and Ad2), along with the use of different templates, enabled the construction of diverse bivalent model-systems. The results revealed a distance-dependency of the bivalent effect, which decreased with increasing binding distance. The stronger binder (Ad1) was able to benefit from bivalent enhancement at relatively large binding distances compared to the weaker binder (Ad2). This denotes a dependency of the bivalent effect on the monovalent binding strength. The same system was used to investigate the factors leading to crosslinking. The results show that only at high concentrations, and when the system does not have to compete with a bivalent enhancement, can multimolecular structures be formed. The second part of this work deals with a bispecific binder. Binding affinities, selectivity and the impact of the binder on receptor activity were tested. Accordingly, oligonucleotides were modified with cilengitide, which is able to bind αvβ3-Integrin, and with a bivalent peptoid, which binds to VEGFR2. The use of different DNA templates enabled construction of several bispecific binders with different binding distances. Measurements with HUVEC cells revealed higher affinities of the bispecific binders compared to the monospecific ones. ELISA-measurements demonstrated that activation or deactivation of the VEGFR2-phosphorylation was distance dependent. Consequently, a model system was constructed which was able to control receptor activity.

Page generated in 0.0473 seconds