• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 6
  • Tagged with
  • 16
  • 16
  • 16
  • 16
  • 13
  • 13
  • 13
  • 10
  • 9
  • 6
  • 5
  • 5
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigations into the cellular interactome of the PB2 protein expressed by seasonal and highly pathogenic avian influenza viruses

Arnold, Ulrike 09 August 2018 (has links)
PB2 ist ein essentieller Bestandteil der trimeren RNA abhängigen RNA Polymerase von Influenzaviren und ist bekannt für seine Schlüsselrolle in der Bestimmung des Viruswirtsspektrums. Diese Arbeit diente der Identifizierung neuer Interaktionspartner von PB2 eines saisonalen und eines hochpathogenen Influenzavirus Stammes im Kontext infizierter humaner alveolar Epithelzellen (A549) unter Einsatz massenspektrometrischer Analysen. Die anschließende Untersuchung ausgewählter zellulärer Interaktoren hatte zum Ziel, deren Einfluss auf den Replikationszyklus der Influenzaviren zu bestimmen, sowie Unterschiede in ihrer Relevanz für das saisonale und das hochpathogene Virus aufzuzeigen. Die Erzeugung und Nutzung von Influenzaviren die einen Strep-tag an ihrem PB2 Protein tragen ermöglichte eine Anreicherung von PB2 und seiner Interaktionspartner. Die anschließende massenspektrometrische Analyse identifizierte 22 potentielle PB2 Interaktionspartner. Eine Auswahl an 13 Proteinen wurde tiefer gehend analysiert und eine Komplexbildung mit PB2 konnte für 9 Proteine bestätigt werden. Darüber hinaus zeigten 11 Proteine einen Polymerase stimulierenden bzw. hemmenden Effekt. Das Polymerase stimulierende Protein HSPA8 wurde zur weiteren Untersuchung ausgewählt. Während ein Einfluss von HSPA8 auf den hochpathogenen Influenzastamm nicht abschließend geklärt werden konnte, wurde seine Bedeutung für den Vermehrungszyklus des saisonalen Stammes aufgezeigt. Die Überexpression von HSPA8 führte zu einer Steigerung der Polymerase-Aktivität, wohingegen die Erniedrigung des HSPA8 Spiegels in einer Verringerung der viralen Replikation und der Polymerase-Aktivität resultierte. Interessanterweise führte die Erniedrigung des HSPA8 Spiegels auch zu stark verminderter PB2-Expression, jedoch nur im Falle des saisonalen Influenzastammes. Dieser Befund deutet auf eine Rolle von HSPA8 als PB2-Chaperon, notwendig für Proteinstabilität von saisonalen aber nicht hochpathogenen Influenzaviren, hin. / PB2 is an essential component of the influenza virus trimeric RNA dependent RNA polymerase and is known to play a key role in virus host range determination. Here, a combined affinity-purification/mass spectrometric approach was performed to identify novel interaction partners of PB2 of seasonal and highly pathogenic viral strains in infected human alveolar epithelial cells (A549). The subsequent analysis of selected cellular interaction partners aimed to determine the influence of these proteins on the replication cycle, as well as to determine differences in their relevance for the seasonal and the highly pathogenic influenza virus strain. Generation and use of recombinant influenza viruses carrying a Strep-tag at their PB2 protein allowed for enrichment of PB2 and its interaction partners. The subsequent mass spectrometric analysis identified 22 potential PB2 interaction partners. A selection of 13 proteins was further analyzed, and co-precipitation with PB2 was confirmed for 9 proteins. Moreover, an inhibitory or stimulatory effect on polymerase activity was observed for 11 proteins. The polymerase stimulating protein HSPA8 was selected for further investigation. While the influence of HSPA8 on the highly pathogenic strain remained unclear, its importance for seasonal influenza virus life cycle was demonstrated. Overexpression of HSPA8 resulted in increased polymerase activity while HSP8 knock down resulted in reduction of viral replication and viral polymerase activity. Intriguingly, the knock down of HSPA8 led to a strong decrease of PB2 protein expression. However, this was only observed for seasonal PB2. These results indicate a role of HSPA8 as a PB2 chaperone, necessary for protein stability of seasonal but not highly pathogenic influenza virus.
2

Assembly von Influenzaviren

Engel, Stephanie Vanessa 23 April 2009 (has links)
Es wird angenommen, dass das Influenzavirus-Glykoprotein Hämagglutinin (HA) für seine Funktion sowohl bei der Virusfreisetzung als auch bei der Fusion von viraler und zellulärer Membran mit Cholesterin- und Sphingolipidreichen Domänen, sogenannten Membran-Rafts, assoziiert sein muss. Aus diesem Grund sollte in dieser Arbeit die Membran-Raft-Affinität von HA in lebenden Zellen mittels FLIM-FRET gemessen werden. Dabei wurde mit Hilfe der Fluroreszenz-Lebenszeit-Messung (FLIM) der Förster-Resonanz-Energie-Transfer (FRET) von fluoreszenzmarkiertem HA auf einen etablierten Raft-Marker bestimmt. Diese Messungen zeigten, dass beide Proteine in gemeinsamen Klustern in der Plasmamembran vorkommen. Durch Cholesterinentzug und durch den Einsatz von Cytochalasin D, welches die Mikrofilamente zerstört, konnte diese Klusterbildung reduziert werden. Demnach tragen sowohl die Membran-Rafts als auch das Aktinnetzwerk zu dieser Klusterbildung bei. Mittels FLIM-FRET konnte zusätzlich bestätigt werden, dass die Signale für die Detergenslöslichkeit von HA in Triton-Extraktionsexperimenten, die Palmitylierung und die stark hydrophoben Aminosäuren zu Beginn der Transmembrandomäne (TMD), auch im lebenden System eine wichtige Rolle spielen. Zusätzlich konnten biochemische Experimente zeigen, dass die hydrophoben Aminosäuren zu Beginn der HA-TMD den intrazellulären Transport, nach der Trimerbildung, entscheidend verzögern. Diese Verzögerung ist vermutlich auf einer erschwerten Integration dieser Proteine in die Membran-Rafts begründet. Die virale Fusion mit der Wirtszellmembran wird durch eine pH5-Behandlung vermittelte Konformationsänderung von HA ausgelöst. FLIM-FRET-Messungen zeigten für die pH5-Konformation von HA eine verglichen mit der pH7-Konformation verringerte Klusterbildung mit dem Raft-Marker. Somit ist offensichtlich, dass die Membranfusion-vermittelnde HA-Konformation eine verringerte Raft-Affinität besitzt. Diese verringerte Raft-Affinität könnte eine wichtige Rolle bei der Störung der Lipide an der Fusionsstelle spielen und somit die Bildung und/oder Vergrößerung der Fusionspore erleichtern. / It has been supposed that the hemagglutinin (HA) of influenza virus is recruited to cholesterol- and sphingolipid-enriched domains, also named membrane-rafts, to accomplish its function in virus budding and membrane fusion. This study aimed at verifying the affinity of HA for membrane-rafts in living cells using fluorescence-lifetime imaging microscopy to measure Förster’s resonance energy transfer (FLIM-FRET). FLIM-FRET revealed strong clustering between a fluorescence-tagged HA-protein and a well-established raft-marker in CHO cells. Clustering was significantly reduced when rafts were disintegrated by cholesterol depletion and when microfilaments were disrupted with cytochalasin D. Thus, membrane-rafts as well as the actin meshwork contribute synergistically to clustering. Clustering was also reduced by the removal of the known signals for the association of HA with detergent-resistant-membranes, the palmitoylation and the first amino acids in the transmembrane region (TMR). Since these mutations are obviously important for the raft-association of HA their function during the transport through the ER and the Golgi-complex was studied. These investigations showed that the exchange of the first three amino acids of the HA-TMR led to a decelerated transport after trimer-formation of the protein, probably due to retarded integration of these proteins into membrane-raft domains. Mediating viral fusion with the host cell membrane requires an irreversible conformational change of HA. FLIM-FRET studies of this low pH conformation unveiled that the clustering with the raft-marker is decisively reduced compared to the pre-fusion conformation of the protein. It might be assumed that the fusion-mediating conformation of HA reduces the proteins affinity for membrane-rafts. Therefore it is likely that this reduced affinity for rafts after the conformational change is relevant to cause perturbation of lipids at the fusion site and thereby facilitating the formation and/or enlargement of the fusion pore.
3

Die dreidimensionale Struktur des Influenzavirus-Hämagglutinin im membranfusionsaktiven Zustand

Ludwig, Kai 23 June 2000 (has links)
Zusammenfassung Zur Freisetzung ihres Genoms in das Innere der Wirtszelle müssen Hüllviren ihre Membran mit der Membran der Wirtszelle verschmelzen. Diese Fusion wird durch eine Konformations- umwandlung der Ektodomäne viraler Glykoproteine ausgelöst. Die Kenntnis der drei- dimensionalen Struktur der vollständigen Ektodomäne in der fusionsaktiven Konformation ist Voraussetzung für das Verständnis des Fusionsmechanismus. Die Fusion von Influenza mit entsprechenden Targetmembranen wird durch eine durch sauren pH ausgelöste Konformationsänderung des als Trimer vorliegenden Glykoproteins Hämagglutinin (HA) vermittelt. Bis jetzt war die dreidimensionale (Röntgenkristall-) Struktur einer enzymatisch abgespaltenen HA-Ektodomäne nur eines Influenzastammes bei neutralem pH-Wert bzw. von einigen Fragmenten der HA2-Untereinheit bei saurem pH-Wert bekannt. In der vorliegenden Arbeit wurden ein geeigneter Influenzastamm sowie geeignete Untersuchungsbedingungen ermittelt, um die 3D-Struktur des kompletten, nicht enzymatisch vorbehandelten HA sowohl in seiner nativen (bei neutralem pH-Wert vorliegenden) als auch in seiner fusionskompetenten (keinesfalls aber bereits inaktivierten) Struktur mittels Kryo- Elektronenmikroskopie und Bildverarbeitung aufzuklären. Es wurde erstmals die 3D-Struktur des kompletten HA eines anderen Influenzastammes (A/Japan) bei neutralem pH-Wert aufgeklärt und mit der bekannten 3D-Struktur von Influenza X-31 verglichen. Außerdem konnte eine fusionskompetente Form rekonstruiert werden, die im Vergleich zur nativen Konformation deutliche Veränderungen in der 3D-Struktur zeigt, ohne daß sich jedoch die Assoziation der Monomere aufhob. Die Befunde werden unter anderem in Hinblick auf die Bedeutung der HA1-Untereinheit für die Fusion diskutiert. Die vorgestellte Methode scheint geeignet, auch andere Membranproteine bzw. Membranfusion-vermittelnde Proteine in verschiedenen konformeren Zuständen aufzuklären (insbesondere jene, die der Röntgenkristallstrukturanalyse nicht zugänglich sind) und so einen diesen Fusionsprozessen eventuell zugrundeliegenden konservierten Funktionsmechanismus aufzuhellen. / Abstract Envelope viruses enter a host cell via fusion between the viral and endosomal membrane, thereby releasing the nucleocapsid into the cytoplasm. The fusion has been accompanied with an conformational change in the ectodomain of viral glycoproteins. To understand the mechanism leading to fusion the three-dimensional (3D) structure of the complete viral glycoprotein in its fusion competent conformation has to be determined. The Fusion of influenza virus which is triggered at low pH has been associated with an irreversible conformational change in the trimeric glycoprotein hemagglutinin (HA). The three-dimensional (crystal) structure is already known of the enzymatic-cleaved ectodomain of one influenza strain (X-31) at neutral pH or of some fragments of the HA2-subunit at low pH, respectively. In this work a suitable influenza strain as well as suitable experimental conditions for investigations of the 3D-structure of the complete and not enzymatically treated HA at neutral and acidic pH conditions have been determined. An cryo-microscopy/angular reconstitution approach has been employed for the 3D- reconstruction of the intact HA of an different influenza strain (A/Japan). This structure is in excellent agreement with the known X-ray crystallographic structure of the bromelain- cleaved ectodomain of HA from influenza X-31. Moreover, for the very first time the 3D structure of the intact HA of Influenza A/Japan in its fusion competent state (at acidic pH) has been calculated. The differences between the two structures are large compared to the marginal differences between the neutral pH structures by EM and by X-ray crystallography, respectively, although the monomers remain tightly connected. These findings will be discussed especially with regard to the role of the HA1 subunit in the fusion process. The procedure is in general applicable to pursue the 3D-structure of (fusion mediating) proteins in various conformational states (especially of those proteins which are not directly accessible by X-ray crystallography). This approach should offer to elucidate the (eventually conserved) mechanism of membrane fusion.
4

Identification of KSRP as a novel protein regulator of the interferon-inducible RNA-dependent protein kinase (PKR) by quantitative mass spectrometry

Sänger, Sandra 16 November 2016 (has links)
Die RNA-abhängige Proteinkinase (PKR) ist eine Interferon-induzierte Proteinkinase mit einer zentralen Rolle in der antiviralen Immunantwort. Die Aktivierung von PKR wird durch Bindung viraler RNA oder spezifischer Protein-Regulatoren ausgelöst und resultiert in der Inhibierung der Translation und Induktion von Transkriptionsfaktoren für die Produktion proinflammatorischer Zytokine. Trotz intensiver Forschung ist es bisher nicht gelungen, das gesamte Spektrum von PKR-Regulatoren und Adaptorproteinen aufzudecken. In der vorliegenden Arbeit wurde mithilfe von quantitativer Massenspektrometrie eine systematische Analyse von PKR Bindungspartnern im Kontext einer Influenzavirusinfektion durchgeführt. Dabei wurden 47 Proteine identifiziert, die nach Infektion mit einem Influenza A Virus spezifisch an PKR gebunden waren. Die Interaktion von PKR und einem Teil der Proteine wurde validiert und es konnte gezeigt werden, dass einige der gefundenen Proteine die PKR-Phosphorylierung verstärkten. Hierbei wurde das KH-Typ Splicing regulatorische Protein (KSRP) als neuer Regulator von PKR identifiziert.Die Aktivierung von PKR durch KSRP wurde dabei durch direkte Interaktion der Proteine über die N-terminale Domäne von PKR vermittelt, war jedoch unabhängig von der RNA-Bindungsfunktion. Immunfluoreszenzversuche zeigten, dass die Infektion mit einer Virusmutante zur Umlagerung beider Proteine in Stress-Granula führte. Verringerte KSRP-Level beeinträchtigten die PKR-Aktivierung, was zu einer 10-fachen Verbesserung der Replikation von mutierten Influenzaviren in Zellen mit verringerter IFN-beta-Expression führte. In dieser Arbeit konnte zum ersten Mal gezeigt werden, dass KSRP die antivirale Abwehr durch direkte Bindung an PKR und die damit verbundene Steigerung der PKR-Aktivität unterstützt. Zusammenfassend unterstreichen die Ergebnisse das Vermögen quantitativer Massenspektrometrie antivirale Mechanismen systematisch aufzuklären, um potenzielle Ziele für antivirale Therapien zu finden. / The RNA-dependent protein kinase (PKR) is an interferon induced protein kinase that plays a significant role in innate antiviral immunity. Activation of PKR can be triggered by binding of viral RNA or distinct protein regulators and results in inhibition of translation and the induction of transcription factors that lead to production of proinflammatory cytokines. Over the last decades, extensive research was conducted to identify the whole network of PKR regulators and adaptor proteins, but it is most likely that still some pieces are missing to complete our understanding of PKR functions. This thesis provides a systematic analysis of PKR binding partners in the context of influenza A virus infection by using quantitative mass spectrometry. In total, 47 proteins that bound specifically to PKR after influenza A virus infection were identified. The interaction between PKR and a subset of candidates was validated and it was shown that some of the identified proteins upon overexpression induced PKR phosphorylation. Hereby, the KH-type-splicing regulatory protein (KSRP) was identified as a novel protein regulator of PKR. Activation of PKR by KSRP was mediated by direct interaction of KSRP with the N-terminal domain of PKR, but was found to be independent from dsRNA binding. Immunofluorescence experiments showed that upon infection with an influenza A mutant virus, both proteins were redistributed to cytoplasmic stress granules. Knockdown of KSRP impaired PKR activation and consequently rescued viral replication of influenza A mutant viruses by one order of magnitude in cells with reduced IFN-beta levels. It was shown for the first time that KSRP is able to support antiviral signalling by enhancing PKR activation in a process that involves direct protein-protein-interaction. Taken together, this study demonstrates the aptitude of quantitative mass spectrometry for elucidation of cellular antiviral response pathways to reveal potential new targets for antiviral therapy.
5

Untersuchung des Infektionsverhaltens verschiedener respiratorischer Viren in humanem ex vivo kultiviertem Lungengewebe

Becher, Anne 23 September 2015 (has links)
Mechanismen, die zur unterschiedlichen Pathogenität niedrig- und hochpathogener aviärer und humanpathogener Influenzaviren im Menschen beitragen, sind bisher nur ansatzweise verstanden. Auch sind Pathomechanismen, die der Middle East Respiratory Syndrome (MERS)-CoV-Infektion zu Grunde liegen, bisher weitgehend unbekannt. In dieser Arbeit wurde ein humanes ex vivo Lungenkulturmodell für die Untersuchung der Influenzavirus- und der MERS-CoV-Infektion etabliert. Dabei wurde die Replikationsfähigkeit und der Zelltropismus der Viren systematisch verglichen. Während hochpathogene aviäre, saisonale und pandemische Influenzaviren effizient in der humanen Lunge replizierten, konnten sich niedrigpathogene aviäre Viren und ein porcines Virus kaum vermehren. Alle Viren zeigten jedoch den gleichen Zelltropismus und infizierten im Alveolarepithel ausschließlich Typ II Zellen. Die unterschiedliche Pathogenität dieser Viren lässt sich daher nicht durch Unterschiede im Zelltropismus erklären. Gleichwohl konnte der humane und der aviäre Influenzavirusrezeptor sowohl auf Typ II als auch auf Typ I Zellen nachgewiesen werden. Niedrigpathogene aviäre Influenzaviren sind in der humanen Lunge durch die Freisetzung von zum größten Teil nicht infektiösen Viruspartikeln restringiert. MERS-CoV replizierte in humanem Lungengewebe mit ähnlicher Kinetik wie ein hochpathogenes H5N1 Virus. MERS-CoV Antigen war sowohl im Bronchialepithel, Alveolarepithel sowie im Endothel nachweisbar. Der funktionelle Rezeptors des MERS-CoV, die Dipeptidylpeptidase 4, wurde in allen infizierten Zelltypen sowie in Alveolarmakrophagen nachgewiesen. Die mikroskopische Analyse infizierter Gewebeproben weist zudem auf einen infektionsbedingten Alveolarschaden hin. Die Studie trägt wesentlich zum pathophysiologischen Verständnis pulmonaler Influenzavirus- und MERS-CoV-Infektionen bei. Das humane ex vivo Lungenkulturmodell stellt ein klinisch relevantes Modell zur Untersuchung respiratorischer Infektionen im Menschen dar. / Mechanisms contributing to the different pathogenicity of low and highly pathogenic avian and seasonal influenza viruses in humans are currently only partially understood. Furthermore, underlying pathological mechanisms of the Middle East Respiratory Syndrome (MERS)-CoV infection in humans are widely unknown. In this study a human ex vivo lung culture model was established, which allowed investigating influenza virus and MERS-CoV infection. Replication and cellular tropism of the different viruses were compared systematically. While highly pathogenic avian, seasonal and pandemic influenza viruses replicated efficiently, low pathogenic avian viruses and a porcine virus propagated poorly. However, all viruses showed the same cellular tropism and infected only type II cells within the alveolar epithelium. Therefore, the different pathogenicity of these viruses cannot be attributed to different cellular tropisms. Nevertheless, the human and the avian influenza virus receptor could be detected on type II and type I cells. Low pathogenic avian influenza viruses are restricted in the human lung by the release of mostly non-infectious progeny virus particles. The MERS-CoV replicated with similar kinetics to a highly pathogenic H5N1 virus in the human lung. MERS-CoV antigen was detected in the bronchial epithelium, alveolar epithelium and endothelium. The functional receptor of MERS-CoV, dipeptidylpeptidase 4, was found in all infected cell types and in alveolar macrophages. Microscopic analysis of infected tissue samples indicated an alveolar damage provoked by MERS-CoV infection. This study contributes substantially to the pathophysiological understanding of the pulmonary influenza virus and MERS-CoV infection. The human ex vivo lung culture model represents a clinically relevant model to investigate human respiratory infections.
6

A temporal, spatial and quantitative study on the influenza A virus transcription, translation and virus-host interaction

Kummer, Susann 09 September 2011 (has links)
Die Vermehrung des Influenza A Virus umfasst, neben anderen wichtigen Schritten, die Transkrption der viralen mRNA und die ribosomale Translation der viralen Proteine. Mit großem Aufwand wurde bereits an der Entwicklung von Methoden zur Untersuchung des zeitlichen Verlaufs der Synthese viraler mRNA während des Vermehrungszyklusses in der Wirtszelle geforscht. In der vorliegenden Arbeit wurden sequenzspezifische FIT-PNA-Sonden, welche einen einzelnen, als künstliche fluoreszente Nukleobase dienenden Interkalator tragen, auf die quantitative RT-PCR sowie die Lebendzellmikroskopie angewandt. Die FIT-PNA-Sonden bieten dabei eine hohe Sensitivität und eine enorme Zielspezifität unter nichtstringenten Hybridisierungsbedingungen. Im Speziellen wurden FIT-PNA Sonden mit Sequenzspezifität zur mRNA der Neuraminidase und des Matrixproteins 1 entworfen und untersucht. Die somit erhaltenen Ergebnisse besitzen eine hohe biologische Relevanz und weisen diese Sonden als vielversprechende Methodik in der Virologie und der Zellbiologie aus. Ihre Anwendung konnte bereits auf das Vesikular Stomatitis Virus ausgeweitet werden. Die Kombination aus biologischer Expertise mit modernen Proteomstudien und detaillierten statistischen Analysen ermöglichte einen systemumfassenden Blick auf die durch eine Infektion bedingten Auswirkungen auf die Wirtszelle. Die Markierung von Aminosäuren mit stabilen Isotopen in Zellkultur wurde hierfür benutzt. Es wurden Proben zu verschiedene Zeitpunkten im Infektionszyklus in die Untersuchungen einbezogen, um zeitaufgelöste Detailstudien der zellulären Proteinbiosynthese und Degradation durchzuführen. / Replication of the influenza A virus involves, amongst other critical steps, the transcription of viral mRNA and ribosomal translation of viral proteins. Significant efforts have been devoted to the development of methods that allow the investigation of viral mRNA progression during the replication cycle inside the host cell. In the present thesis sequence specific FIT-PNA probes which contain a single intercalator serving as artificial fluorescent nucleobase were introduced for quantitative RT-PCR and live cell imaging. FIT-PNAs provide for both high sensitivity and high target specificity at nonstringent hybridisation conditions (where both matched and mismatched probetarget complexes coexist). In particular, FIT-PNAs specific to the neuraminidase and matrix protein 1 were successfully designed and examined. The obtained results are of high biological importance and suggest the FIT-PNA technique as promising tool in the field of virology and cell biology as this approach was readily applied to Vesicular Stomatitis Virus as well. By combining biological expertise with modern high throughput quantitative proteomics and detailed statistical analysis a system wide view of the effects and dynamics of the early H1N1 infection on the cell proteome was generated. Stable isotope labelling of amino acids in cell culture (SILAC) was employed to globally track changes in gene expression at the protein level. Furthermore, samples at various time points post infection enabling a more detailed timeresolved analysis of host cell protein biosynthesis and degradation during the infection cycle were included. As a result the specific expression characteristics of single genes and functional gene subsets in response to viral infection were bioinformatically analysed.
7

Deciphering the assembly of multi-segment genome complexes in influenza A virus

Prisner, Simon 14 September 2017 (has links)
Influenza A besitzt ein segmentiertes, achtsträngiges Genom in negativer Orientierung. Die einzelnen Segmente sind in virale Ribonukleoproteinkomplexe (vRNPs) verpackt. Genomische Segmentierung erlaubt es Influenza, zwischen verschiedenen Stämmen Reassortierung zu betreiben, was zur Entstehung von hochgradig virulenten und potentiell pandemischen neuen Stämmen führen kann. Die Existenz eines Packungsmechanismus wird vermutet, der sicherstellt dass exakt ein Segment jeden Typs in neu knospende Viren verpackt wird. Es gibt Indizien dafür, dass die vRNPs während ihres Wegs vom Nukleus zur Plasmamembran, wo die Knospung stattfindet, Multi-Segment-Komplexe ausbilden, die durch RNA-RNA-Interaktionen, sog. Packungssignale vermittelt werden. Dieser Prozess ist allerdings noch nicht hinreichend verstanden. In dieser Arbeit wurde eine neue RNA-FISH-Methode namens MuSeq-FISH entwickelt und angewendet, um die spektralen Limitierungen bisheriger Multiplexing-Ansätze zu überwinden und alle vRNA- und mRNA-Spezies vom humanen Stamm A/Panama des Influenza A Virus zu visualisieren. Außerdem wurde ein automatisierter Arbeitsablauf zur Registrierung/Ausrichtung, Punktdetektion, computergestützter Kolokalisationsanalyse und kombinatorischer Analyse der Mikroskopiebilder entwickelt, der auch große Datenmengen verarbeiten kann. Erstmalig wurde damit eine vollständige Kartographierung der Lokalisation und Häufigkeiten alle viralen RNAs in einzelnen Zellen vorgenommen. Aus diesen Daten konnten wir Erkenntnisse zu den Mechanismen und möglichen Hierarchien innerhalb des Packungsprozesses gewinnen. Dazu wurden Reaktionspfade und statistische Analysen von über 60 einzelnen Zellen und mehr als 105 einzelner vRNPs herangezogen. Es wurden auch Informationen über die vRNP-Häufigkeiten und deren Unterschiede zwischen Einzelzellen gewonnen, die zeigen dass sich Infektionsumgebungen auch in großer räumlicher Nähe stark unterscheiden und dadurch den Verpackungsmechanismus beeinflussen können. Weiterhin wurde eine Modellierung basierend auf bedingten Wahrscheinlichkeiten genutzt, um Reaktionskonstanten aus statischen FISH-Daten zu erhalten. Wir haben unsere Analysen zusätzlich auf den aviären Stamm A/Mallard und die reassortanten Stämme A/Pan-M, A/Pan-NS und A/Pan-NSM erweitert, die ein gemischtes Genom aus A/Panama und A/Mallard enthalten. Dabei konnte gezeigt werden, dass sich die Packungsdynamiken und -netzwerke auch zwischen nah verwandten Stämmen erheblich unterscheiden. Heterogene Verpackungsprozesse wurden für diese Stämme observiert, anhand welcher A/Pan-M und A/Pan-NS eher A/Mallard zugeordnet werden konnten. Ebenfalls wurden erste Schritte unternommen, um die Methode in verschiedener Hinsicht zu erweitern: es zeigte sich, dass MuSeq-FISH und STED-Mikroskopie im Prinzip kombinierbar sind, was auch durch gleichzeitige Detektion von drei vRNA-Segmenten gezeigt werden konnte. MuSeq-FISH wurde auch genutzt, um einzelne Virionen direkt nach deren Eintritt in die Zelle zu färben und auf deren genomischen Inhalt hin zu untersuchen. Dabei fiel auf, dass die Segmente 7 und 8 besonders häufig fehlten, wenn unvollständige Genome detektiert wurden. Außerdem wurde ein Plasmidsystem auf Basis des pHW2000-Vektors für fast alle Segmente von A/Panama umkloniert, welches nun die Expression von mRNA ohne die gleichzeitige Expression von vRNA ermöglicht. In einem ersten Experiment konnte die Funktionalität des Systems gezeigt werden, so dass es potentiell in Transfektionsexperimenten die Untersuchung vom Packungsmechanismus ermöglichen kann, und zwar unter infektionsähnlichen Bedingungen mit beliebig kombinierbaren vRNA-Sets. Wir erwarten, dass MuSeq-FISH zusammen mit dem automatisierten Arbeitsablauf auch eine nützliche Methode für andere biologische Fragestellungen darstellen wird, besonders wenn es um hochgradig kolokalisierte Untersuchungsobjekte geht. Fundiertes Wissen über den Packungsmechanismus von Influenzaviren kann helfen, die Entstehung von pandemischen Stämmen besser zu verstehen und kann Möglichkeiten aufzeigen, neue antivirale Medikamente zu entwickeln. / Influenza A has a segmented genome of eight single-stranded, negative-sense RNAs packed into ribonucleoproteins (vRNPs). This segmentation allows reassortment between different strains with the potential to create highly virulent, pandemic new strains. A packaging mechanism is supposed, ensuring the incorporation of one copy of each segment species into budding virions. En route from the nucleus to budding at the plasma membrane, the vRNPs are thought to form multisegment complexes via RNA-RNA and RNP-RNP interactions called packaging signals. This process is not yet completely understood. Here, a new RNA-FISH method (MuSeq-FISH) was introduced to overcome the spectral limits of multiplexing in order to visualize all IAV vRNA and mRNA targets of the human strain A/Panama. An image processing pipeline including image registration, spot detection, automated colocalization analysis and combinatorial analysis was developed, capable of high data throughput. For the first time, a complete map of the localization and abundance of all viral RNAs in individual cells has been generated. This data enabled detailed investigations about the mechanisms and potential hierarchies within the packaging process, which were inferred from pathways and statistical analysis of over 60 individual cells with more than 105 vRNP occurrences. We also gained information about the abundance and cell-to-cell heterogeneity of vRNPs among large sets of infected cells, unravelling that infection environments even in neighboring cells differ strongly in segment composition with an impact on packaging. In addition, conditional probability modelling was conducted to infer reaction constants from inherently static FISH data. We have extended this analysis to the avian strain A/Mallard and the reassortant strains A/Pan-M, A/Pan-NS and A/Pan-NSM, which contain reassorted genomes of A/Panama and A/Mallard. Here we have shown that packaging dynamics and networks differ widely, even among closely related strains. Packaging processes in these strains seemed to be very diverse, however we found A/Pan-M and A/Pan-NS to more closely resemble A/Mallard in terms of packaging. First steps have been taken to extend the method into different directions: combi- nation of MuSeq-FISH with STED imaging is in principle possible and has been applied for simultaneous detection of three vRNA species. MuSeq-FISH was also applied to single IAV virions directly after cell entry in order to study their genome content, where we found segments 7 and 8 to be lacking most frequently. In addition, a system of pHW2000-based plasmids expressing only mRNA has been created for almost all A/Panama segments. The functionality of this system was shown in a proof of concept, so that its use in transfection experiments can serve as a potential instrument to investigate vRNP packaging in artificial infection-like conditions with reduced vRNAs sets of choice. MuSeq-FISH together with its image analysis pipeline will be a useful tool also for other biological questions, especially concerning high-grade colocalization. Further understanding of the vRNP packaging in influenza can help us to understand the emergence of pandemic strains and open up paths to new antiviral medication.
8

Influenza virus hemagglutinin contains a cholesterol consensus motif required for efficient intracellular transport and lipid raft integration

Vries, Maren de 30 November 2015 (has links)
Das Hämagglutinin (HA) der Influenzaviren wird während der Assemblierung in Cholesterin- und Sphingolipid-reiche Domänen (Rafts) der Plasmamembran rekrutiert. Vorangehende Studien konnten mittels Fluoreszenzresonanzenergietransfer eine Raft-Integration nachweisen, die von zwei Raft-Zielsignalen abhängig war; zum einen von drei S-acylierten Cysteinen in der zytoplasmatischen Domäne und zum anderen von hydrophoben Aminosäuren (VIL) am Beginn der Transmembrandomäne (TMD). Zudem zeigte sich ein möglicher Einfluss des VIL-Motives auf den intrazellulären Proteintransport. Um diese Annahme zu bestätigen, wurden HA Mutanten in Zellen exprimiert und ihre Ankunft im medialen und trans-Golgi verfolgt. In dieser Arbeit konnte eine Beteiligung des VIL-Motives am Transport bestätigt werden, jedoch nicht der S-Acylierungen. Zudem wurde eine generelle Abhängigkeit des Transportes von der Sphingolipidsynthese beobachtet. Da sowohl die Cholesterinsynthese als auch die Sphingolipidsynthese für den Transport von HA benötigt werden, habe ich die Hypothese aufgestellt, dass das VIL-Motiv in der Lage sein könnte, mit Raft Lipiden zu interagieren. Ein Sequenzvergleich ergab, dass kein Sphingolipid-Bindemotiv vorhanden ist, jedoch ein potenzielles Cholesterin-Consensus-Motiv (CCM, W/Y-I/V/L-K/R). Dieses Motiv wurde nur in der Sequenz von Gruppe 1 jedoch nicht Gruppe 2 HAs gefunden und umfasst das Leucin des VIL Motives. Tatsächlich ist die Mutation des Leucins aber nicht des vorangehenden Isoleucins für den verzögerten Transport verantwortlich. Untersuchungen weiter Einzel- und Mehrfachmutanten konnten eine Abhängigkeit des intrazellulären Transportes von einer möglichen Cholesterinbindung verifizieren. Zudem konnte auch ein zunehmender Effekt auf die Kinetiken vom medialen Golgi zum TGN beobachtet werden, welcher auch die Oberflächenexpression negativ beeinflusste. FLIM-FRET Analysen zeigten zusätzlich eine reduzierte Raft Assoziation der CCMMutanten mit Rafts an der Plasmamembran. Daher kann man spekulieren, dass HA mit Cholesterin interagiert, wodurch sein intrazellulärer Transport durch den Golgi und die Assoziation mit Rafts gewährleistet wird. / During assembly the hemagglutinin (HA) of influenza viruses is recruited to cholesterol- and sphingolipid rich domains of the plasma membrane (lipid rafts). Preceding studies using fluorescence resonance energy transfer showed that lipid-raft integration is dependent on two raft-targeting signals, three S-acylated cysteines located in the cytoplasmic tail and hydrophobic amino acids (VIL) in the part of the transmembrane region (TMR). Furthermore, they gave rise to the assumption that at least the VIL motif might also be important for the intracellular transport of the protein along the exocytic pathway. To verify this assumption, HA mutants were transiently expressed in cells and their arrival in the medial and trans-Golgi compartment was quantified. The observation regarding the involvement of the VIL motif, but not the S-acylation, was verified and a general dependency of HA´s transport on sphingolipid synthesis was detected. Since both cholesterol and sphingolipid synthesis are needed for the transport of HA, I hypothesized that the VIL motif might be able to interact with raft lipids. Sequence alignment revealed no sphingolipid-binding motif, but a putative cholesterol consensus motif (CCM, W/Y-I/V/L-K/R). This CCM is found only in the sequence of group 1 but not group 2 HAs and includes the leucine of the VIL motif. Indeed, mutation of the leucine, but not of the preceding isoleucine is responsible for the delayed transport. Investigation of further single and multiple mutations in the CCM verified a dependency of HA´s intracellular transport on the putative cholesterol-binding motif. Additionally the effect on the kinetics increased from the medial Golgi to the TGN also negatively effecting surface expression. Analysis by FLIM-FRET furthermore displayed a reduced association of HA with mutations in the CCM with lipid rafts at the plasma membrane. Therefore, it is speculated that HA associates with cholesterol, an interaction that facilitates its intracellular transport through the Golgi and association with lipid rafts at the plasma membrane.
9

Host cell invasion by influenza A virus

Sieben, Christian 30 May 2013 (has links)
Influenzaviren müssen in die Wirtszelle aufgenommen werden, um dort ihr Genom freizusetzen und ihre Replikation mit Hilfe des Reproduktionsapparats der Zelle einzuleiten. Der komplexe Replikationszyklus der Influenza A Viren ist noch nicht vollständig verstanden. Er beginnt mit der Bindung des viralen Hämagglutinins (HA) an Sialinsäure (SA) auf der Zelloberfläche der Wirtszelle. In dieser Arbeit wurde die Virusbindung an Zellen mit unterschiedlicher Rezeptorkomposition verglichen. Dabei konnte gezeigt werden, dass für die zelluläre Spezifität die Präsentation des Rezeptors innerhalb der Plasmamembran der Zelle eine größere Rolle spielt als die Struktur des Rezeptorglykans selbst. Des Weiteren deuten die Beobachtung sehr kleiner Kräfte und ein stufenweises Öffnen von Bindungen auf eine multivalente Interaktion hin. Multivalenz wird oft in biologischen Bindungsprozessen beobachtet und kann Bindungskräfte enorm verstärken. Basierend auf diesen Ergebnissen wurden inhibitorische Nanopartikel entwickelt, die die natürliche Zelloberfläche als hochaffine Bindungsalternative imitieren. Verschiedenartige Nanopartikel wurden evaluiert und konnten die Virusaktivität um mehr als 80 % hemmen. Nach der Bindung wird das Virus durch Endozytose in die Zelle aufgenommen. Durch spezifische Virusmarkierung und gleichzeitiger Expression von zellulären Markerproteinen wurde der Transport einzelner Viren in lebenden Zellen verfolgt. Dabei konnte gezeigt werden, dass das Virus sowohl durch frühe, als auch durch späte Endosomen wandern muss, um sein Genom erfolgreich in das Zytoplasma zu entlassen. Außerdem verzögert das Virus die endosomale Ansäuerung um eine optimale Aufenthaltsdauer im Endosom und die lokalisierte Fusion in der Nähe des Zellkerns zu gewährleisten. Pharmakologisches Eingreifen in diese Prozesse konnte zudem weitere kritische Faktoren identifizieren, die die Effizienz der Virusinfektion stark beeinflussen. / Influenza virus must enter a host cell to deliver its genome, use the cells reproductive machinery and eventually initiate its replication. The replication cycle of influenza A virus is very complex and still not fully understood. It generally starts with binding of the viral protein hemagglutinin (HA) to its cellular receptor sialic acid (SA). In this work, virus-cell attachment forces were investigated at the single molecule level using intact virus binding to living cells, a set-up that closely mimics the in vivo situation. Cells of different surface SA composition were compared. It could be shown that the unique presentation of the ligand within the cells plasma membrane, rather than the structure of the receptor-glycan itself, strongly affects cellular specificity. The low binding forces as well as the observation of stepwise unbinding events suggest a multivalent interaction type. Based on this finding, inhibitory nanoparticles mimicking the cell surface were constructed. Different particles were evaluated and shown to efficiently inhibit virus infection by ≥ 80 %. Since many molecular details of multivalent interactions remain poorly understood parameters such as ligand spacing and presentation were varied and revealed that the density of ligands as well as the interacting surface plays critical roles for virus inhibition. Upon attachment, the virus enters the cell by endocytosis. Virus trafficking was followed at the single-virus level in living cells. The kinetics of virus transport were visualized using fluorescent marker proteins in combination with specific virus labeling. It was found that the virus needs to progress through early and late endosomal compartments in order to efficiently uncoat and release its genome. Further, the virus delays the endosomal acidification to ensure optimal residence time and fusion in the region close to the host cell nucleus. Drug treatment furthermore unraveled critical factors influencing viral infection efficiency.
10

Lateral organization of the transmembrane domain and cytoplasmic tail of influenza virus hemagglutinin revealed by time resolved imaging

Scolari, Silvia 25 August 2009 (has links)
Der Viruspartikelzusammenbau hängt von der Anreicherung viraler Untereinheiten in spezifischen Domänen der PM ab. Es wird vorgeschlagen, dass Membran-Rafts – geordnete, sphingomyelin- und cholesterinreiche Mikrodomänen in der PM – als lokale Rekrutierungsstellen dienen. Hämagglutinin (HA) ist ein homotrimeres Glykoprotein in der Hülle des Influenzavirus. Es dient der Bindung an die Wirtszelle und der Fusion mit dem Endosom. Es wird angenommen, dass HA bei der Abschnürung der Viruspartikel von der Zelle mitwirkt. Zwei Hauptbeobachtungen führten zu der Hypothese, dass sich HA in Lipid-Mikrodomänen einlagert: HA wurde biochemisch in Detergens-resistenten Membranen nachgewiesen und die Virushülle ist mit raftbildenden Lipiden angereichert. Um die Rolle der HA-Transmembrandomäne für die Lipid-Raft-Inkorporation aufzuklären, wurde ein Konstrukt entwickelt, das den C-Terminus von HA mit dem gelb fluoreszierenden Protein YFP fusioniert, und die Transmembrandomäne, nicht aber die N-terminale Ektodomäne von HA enthält. In transfizierten Säugetierzellen wurde der Förster-Resonanz-Energie-Transfer (FRET) zwischen diesem Konstrukt und einem GPI-verankerten cyan fluoreszierenden Protein CFP (Raft-Marker) durch Fluoreszenz-Lebenszeit-Mikroskopie (FLIM) gemessen. Die Ergebnisse zeigen, dass sich HA-Konstrukte in Cholesterin-abhängigen Lipiddomänen anreichern, was durch eine erhöhte FRET-Effizienz nachgewiesen wurde. Zudem führen ein Cholesterinentzug aus der PM und die Deletion hochkonservierter Palmitylierungsstellen zu einer signifikanten Verringerung selbiger; sehr gering war diese zwischen dem HA-Konstrukt und einem Nicht-Raft-Marker. Darüberhinaus konnte durch ortsspezifische Mutagenese gezeigt werden, dass die verwendeten Konstrukte disulfidbrückenverbundene Oligomere bilden, welche Voraussetzung für den Transport der Konstrukte an die PM sind. Zeitaufgelöste Anisotropiemessungen ergaben für diese ein starkes Homo-FRET-Signal, welches die Oligomerisierungshypothese bestätigt. / Numerous enveloped viruses bud from the host cell plasma membrane (PM). Assembly of the new viral particles depends on the accumulation of the viral subunits at specific sites of the cell membrane. Lipid domains or rafts enriched of sphingomyelin and cholesterol were suggested as sites for local recruitment of viral components. Hemagglutinin (HA), a homotrimeric glycoprotein embedded in the envelope of influenza virus, mediates binding of the virus to the host cell and fusion between the viral envelope and the endosomal membrane. HA might play an important role in budding of the viral particles from the host cell. Two observations led to the suggestion that HA entraps in lipid microdomains. First, HA was rescued in DRM fractions, second the viral envelope was found to be enriched in lipids generally forming rafts. To elucidate the role of the HA transmembrane domain in lipid raft localization we expressed constructs harboring the transmembrane domain and the cytoplasmic tail but lacking the N-terminal ectodomain of HA in the PM of mammalian cells. We studied energy transfer (FRET) between these constructs and a GPI anchored CFP as a raft marker by fluorescence lifetime imaging microscopy (FLIM). Our results suggest that HA constructs are indeed sorted into cholesterol-dependent lipid domains since cholesterol depletion of the PM caused a significant decrease of FRET efficiency. Likewise, deletion of the three highly conserved palmitoylation sites of HA is also accompanied by a reduction of FRET efficiency. Site directed mutagenesis demonstrated that TMD-HA constructs form disulfide linked oligomers and that oligomerization is fundamental for the transport to the PM. This result was corroborated by time resolved anisotropy measurements that revealed strong homoFRET between TMD-HA-YFP molecules, thus indicating protein clustering. Accordingly, trimerization of full length HA is fundamental for stability and the subsequent delivery of the protein to the cell surface.

Page generated in 0.0293 seconds