• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deciphering the assembly of multi-segment genome complexes in influenza A virus

Prisner, Simon 14 September 2017 (has links)
Influenza A besitzt ein segmentiertes, achtsträngiges Genom in negativer Orientierung. Die einzelnen Segmente sind in virale Ribonukleoproteinkomplexe (vRNPs) verpackt. Genomische Segmentierung erlaubt es Influenza, zwischen verschiedenen Stämmen Reassortierung zu betreiben, was zur Entstehung von hochgradig virulenten und potentiell pandemischen neuen Stämmen führen kann. Die Existenz eines Packungsmechanismus wird vermutet, der sicherstellt dass exakt ein Segment jeden Typs in neu knospende Viren verpackt wird. Es gibt Indizien dafür, dass die vRNPs während ihres Wegs vom Nukleus zur Plasmamembran, wo die Knospung stattfindet, Multi-Segment-Komplexe ausbilden, die durch RNA-RNA-Interaktionen, sog. Packungssignale vermittelt werden. Dieser Prozess ist allerdings noch nicht hinreichend verstanden. In dieser Arbeit wurde eine neue RNA-FISH-Methode namens MuSeq-FISH entwickelt und angewendet, um die spektralen Limitierungen bisheriger Multiplexing-Ansätze zu überwinden und alle vRNA- und mRNA-Spezies vom humanen Stamm A/Panama des Influenza A Virus zu visualisieren. Außerdem wurde ein automatisierter Arbeitsablauf zur Registrierung/Ausrichtung, Punktdetektion, computergestützter Kolokalisationsanalyse und kombinatorischer Analyse der Mikroskopiebilder entwickelt, der auch große Datenmengen verarbeiten kann. Erstmalig wurde damit eine vollständige Kartographierung der Lokalisation und Häufigkeiten alle viralen RNAs in einzelnen Zellen vorgenommen. Aus diesen Daten konnten wir Erkenntnisse zu den Mechanismen und möglichen Hierarchien innerhalb des Packungsprozesses gewinnen. Dazu wurden Reaktionspfade und statistische Analysen von über 60 einzelnen Zellen und mehr als 105 einzelner vRNPs herangezogen. Es wurden auch Informationen über die vRNP-Häufigkeiten und deren Unterschiede zwischen Einzelzellen gewonnen, die zeigen dass sich Infektionsumgebungen auch in großer räumlicher Nähe stark unterscheiden und dadurch den Verpackungsmechanismus beeinflussen können. Weiterhin wurde eine Modellierung basierend auf bedingten Wahrscheinlichkeiten genutzt, um Reaktionskonstanten aus statischen FISH-Daten zu erhalten. Wir haben unsere Analysen zusätzlich auf den aviären Stamm A/Mallard und die reassortanten Stämme A/Pan-M, A/Pan-NS und A/Pan-NSM erweitert, die ein gemischtes Genom aus A/Panama und A/Mallard enthalten. Dabei konnte gezeigt werden, dass sich die Packungsdynamiken und -netzwerke auch zwischen nah verwandten Stämmen erheblich unterscheiden. Heterogene Verpackungsprozesse wurden für diese Stämme observiert, anhand welcher A/Pan-M und A/Pan-NS eher A/Mallard zugeordnet werden konnten. Ebenfalls wurden erste Schritte unternommen, um die Methode in verschiedener Hinsicht zu erweitern: es zeigte sich, dass MuSeq-FISH und STED-Mikroskopie im Prinzip kombinierbar sind, was auch durch gleichzeitige Detektion von drei vRNA-Segmenten gezeigt werden konnte. MuSeq-FISH wurde auch genutzt, um einzelne Virionen direkt nach deren Eintritt in die Zelle zu färben und auf deren genomischen Inhalt hin zu untersuchen. Dabei fiel auf, dass die Segmente 7 und 8 besonders häufig fehlten, wenn unvollständige Genome detektiert wurden. Außerdem wurde ein Plasmidsystem auf Basis des pHW2000-Vektors für fast alle Segmente von A/Panama umkloniert, welches nun die Expression von mRNA ohne die gleichzeitige Expression von vRNA ermöglicht. In einem ersten Experiment konnte die Funktionalität des Systems gezeigt werden, so dass es potentiell in Transfektionsexperimenten die Untersuchung vom Packungsmechanismus ermöglichen kann, und zwar unter infektionsähnlichen Bedingungen mit beliebig kombinierbaren vRNA-Sets. Wir erwarten, dass MuSeq-FISH zusammen mit dem automatisierten Arbeitsablauf auch eine nützliche Methode für andere biologische Fragestellungen darstellen wird, besonders wenn es um hochgradig kolokalisierte Untersuchungsobjekte geht. Fundiertes Wissen über den Packungsmechanismus von Influenzaviren kann helfen, die Entstehung von pandemischen Stämmen besser zu verstehen und kann Möglichkeiten aufzeigen, neue antivirale Medikamente zu entwickeln. / Influenza A has a segmented genome of eight single-stranded, negative-sense RNAs packed into ribonucleoproteins (vRNPs). This segmentation allows reassortment between different strains with the potential to create highly virulent, pandemic new strains. A packaging mechanism is supposed, ensuring the incorporation of one copy of each segment species into budding virions. En route from the nucleus to budding at the plasma membrane, the vRNPs are thought to form multisegment complexes via RNA-RNA and RNP-RNP interactions called packaging signals. This process is not yet completely understood. Here, a new RNA-FISH method (MuSeq-FISH) was introduced to overcome the spectral limits of multiplexing in order to visualize all IAV vRNA and mRNA targets of the human strain A/Panama. An image processing pipeline including image registration, spot detection, automated colocalization analysis and combinatorial analysis was developed, capable of high data throughput. For the first time, a complete map of the localization and abundance of all viral RNAs in individual cells has been generated. This data enabled detailed investigations about the mechanisms and potential hierarchies within the packaging process, which were inferred from pathways and statistical analysis of over 60 individual cells with more than 105 vRNP occurrences. We also gained information about the abundance and cell-to-cell heterogeneity of vRNPs among large sets of infected cells, unravelling that infection environments even in neighboring cells differ strongly in segment composition with an impact on packaging. In addition, conditional probability modelling was conducted to infer reaction constants from inherently static FISH data. We have extended this analysis to the avian strain A/Mallard and the reassortant strains A/Pan-M, A/Pan-NS and A/Pan-NSM, which contain reassorted genomes of A/Panama and A/Mallard. Here we have shown that packaging dynamics and networks differ widely, even among closely related strains. Packaging processes in these strains seemed to be very diverse, however we found A/Pan-M and A/Pan-NS to more closely resemble A/Mallard in terms of packaging. First steps have been taken to extend the method into different directions: combi- nation of MuSeq-FISH with STED imaging is in principle possible and has been applied for simultaneous detection of three vRNA species. MuSeq-FISH was also applied to single IAV virions directly after cell entry in order to study their genome content, where we found segments 7 and 8 to be lacking most frequently. In addition, a system of pHW2000-based plasmids expressing only mRNA has been created for almost all A/Panama segments. The functionality of this system was shown in a proof of concept, so that its use in transfection experiments can serve as a potential instrument to investigate vRNP packaging in artificial infection-like conditions with reduced vRNAs sets of choice. MuSeq-FISH together with its image analysis pipeline will be a useful tool also for other biological questions, especially concerning high-grade colocalization. Further understanding of the vRNP packaging in influenza can help us to understand the emergence of pandemic strains and open up paths to new antiviral medication.
2

Studies on conformational stability of the ectodomain of influenza virus hemagglutinin

Rachakonda, P. Sivaramakrishna 01 December 2005 (has links)
Das Hüllglykoprotein Hämagglutinin (HA) von Influenzavirus ist verantwortlich sowohl für die Bindung als auch für die nachfolgende Fusion der viralen Hülle mit der endosomalen Membran. Eine Analyse der 3D Struktur der HA-Ektodomaine zeigt, dass die Stabilität des Proteins sowohl durch kovalente als auch durch nicht-kovalente Wechselwirkungen bedingt ist. Die Konformationsänderung von HA bei saurem pH-Wert weißt auf eine mögliche Rolle von Protonierungseffekten auf ionisierbare Aminosäuren hin. Untersuchungen zur Bedeutung geladener Aminosäuren und Salzbrücken für die Struktur des HA wurden auf der Grundlage von ‚site directed mutagenesis’ durchgeführt. Der Einfluss der Mutationen auf die Konformationsänderung und die Fusionsaktivität von HA wurden durch einen Proteinase K-Assay bzw. Fluoreszenzmikroskopie erfasst. Die Ergebnisse beider Methoden wurden miteinander korreliert. Abgesehen von der Mutante R109E zeigten Wildtyp-HA und alle anderen Mutanten eine vergleichbare Oberflächenexpression. Die beobachteten Unterschiede in der pH-Abhängigkeit der Konformationumwandlung zwischen Wildtyp-HA und HA-Mutanten zeigen, daß eine Zerstörung von Salzbrücken und ggf. eine Erhöhung der elektrostatischen Abstoßung an den betrachteten Kontakstellen sehr wahrscheinlich eine Herabsetzung der energetischen Barriere der Konformationsumwandlung verursacht. Dieser Ergebnisse erklären die molekularen Grundlagen des erhöhten pH-Schwellwertes der HA-Konformationsumwandlung von Amantadin-resistenten Influenzaviren. Im Gegensatz wurde für Mutanten, die die Stabilität von HA erhöhten, keine Konformationsumwandlung bei einem pH-Wert beobachtet, der typisch für die Konformationumwandlung von Wildtyp-HA war. Aminosäuren, die denen dieser stabiliserenden Mutationen entsprachen, wurden in einer natürlichen Influenzavirusvariante – A/JPN/305/57 – gefunden. Die Bedeutung von Ladungen für die Stabilität der HA-Ektodomaine wird dadurch unterstrichen, dass eine Konservierung einer positiven Ladung und insbesondere eines Argininrestes in der Position 109 (Nummerierung auf der Basis von HA X31) für alle Influenzaviren A und B gefunden wurde. Die Ergebnisse der Arbeit zeigen, dass sehr wahrscheinlich eine komplexe Salzbrücke an der Kontaktfläche zwischen HA1 und HA2 für alle Influenzaviren A evolutionär konserviert ist. / Hemagglutinin (HA), a major envelope glycoprotein is responsible for fusing viral and endosomal membranes during influenza virus entry. The analysis of 3D crystal structure of the HA ectodomain shows that the stability of protein is maintained by both non-covalent and covalent interactions. The conformational change of HA at low pH indicates a role for protonation effects of the ionisable amino acids. Structural investigations were done using “site directed mutagenesis” in order to conceive the importance of charged amino acids and more emphatically the involvement of salt bridges. The effect of mutations on the conformational change and fusion activity was probed by proteinase K assay and fluorescence microscopy respectively. It was observed that HA-wt and all the mutants except R109E showed comparable surface expression. The difference in pH threshold between the HA-wt and the mutants showed that breakage of salt bridge and further incorporation of repulsion at the considered interfaces would lower the energy barrier requirements for the conformational change. The results explain the molecular basis of the higher pH threshold for naturally occurring amantadine resistant mutants. On the other hand, mutants designed to stabilise the HA were resistant to conformational changes at those pH values which typically trigger the conformational change of HA-wt. Coincidentally these mutations were found to be existing in the natural variant of H2 Japan subtype (A/JPN/305/57). Interestingly, the study shows that a positive charge and, more specifically, an Arg residue at position 109 (numbering based on X-31 strain) is conserved in all of the influenza A and B viruses underlining the relevance of electrostatic interactions for the HA stability. Aptly a complex salt bridge at the interface of HA1 and HA2 is probably conserved evolutionarily in all the members of influenza A virus.
3

Dissecting the protein interaction pattern of Influenza A virus nuclear export complex - A fluorescence fluctuation spectroscopy approach

Luckner, Madlen 16 May 2019 (has links)
Im Unterschied zu anderen RNA Viren vervielfältigen Influenzaviren ihr Genom im Zellkern infizierter Zellen. Für die erfolgreiche Vermehrung müssen neu gebildete Genomsegmente (virale Ribonukleoproteine, vRNPs) wieder aus dem Zellkern exportiert werden. Dafür nutzt Influenza einen Exportkomplex, der sich aus dem viralen Matrixprotein 1 (M1) und Nukleusexportprotein (NEP) zusammensetzt und vRNPs unter Verwendung des zellulären Exportproteins CRM1 aus dem Zellkern transportiert. Zahlreiche Fragen im Zusammenhang mit dem Exportkomplex sind noch unbeantwortet: Wie viele Exportkomplexe werden pro vRNP gebunden? Wie interagieren die Proteine innerhalb des Komplexes mit vRNPs? Wie wird die zeitliche und räumliche Präsenz der beteiligten Proteine im Verlauf der Infektion reguliert? Um zu einem besseren Verständnis beizutragen, wurden in der vorliegenden Arbeit Fluoreszenzfluktuationsspektroskopie und molecular brightness-Analysen genutzt, um die Oligomerisierung der beteiligten Exportkomplexproteine zu quantifizieren. Werden Fluoreszenzproteine für solche Untersuchungen verwendet, treten häufig nicht-fluoreszente Zustände auf, die die Bestimmung des Oligomerzustandes beeinflussen. Daher wurde in dieser Arbeit ein einfaches Korrekturmodel vorgestellt, das die Population an nicht-fluoreszenten Zuständen berücksichtigt, und somit die genaue Bestimmung des Oligomerzustandes erlaubt. Dadurch konnte zum ersten Mal gezeigt werden, dass NEP Homodimere im Zytoplasma ausbildet, wohingegen eine um das 2,5-fach geringere Homodimerpopulation im Zellkern vorhanden war. Durch die Integration von Informationen über den Lokalisationsphänotyp und den Oligomerzustand von NEP sowie mehrerer Mutanten, konnte ein Modell abgeleitet werden, dass den Regulationsmechanismus beschreibt: Durch vorrübergehendes Maskieren und Demaskieren der beiden Nukleusexportsignale wird der Transport von NEP reguliert. Die Dimerisierung im Zytoplasma und Monomerisierung im Zellkern unterstützen diesen Mechanismus. / Influenza viruses are the causative agent of severe epidemics and pandemics, causing up to 650,000 deaths annually. Unlike other RNA viruses, Influenza viruses replicate their genome within the nucleus of cells. Hence, progeny genome segments - viral ribonucleoproteins (vRNPs) - need to be exported from the nucleus to complete the replication cycle. To fulfil this task, Influenza relies on a viral nuclear export complex built from M1 and NEP, that mediates export by hijacking the cellular CRM1-dependent export machinery. In this context a number of questions remain unanswered, such as how many export complexes bind to a single vRNP, what is the exact interaction pattern of vRNPs with export complex proteins, and how translocation of nuclear export relevant proteins such as NEP are regulated and optimally timed during the course of infection? In the present study, the potential of NEP to form homo-dimers in situ was shown for the first time by applying fluorescence fluctuation spectroscopy (FFS) and molecular brightness analysis, that allows determination of protein oligomerization in living cells. However, when using fluorescent proteins in FFS studies non-fluorescent states are observed, which strongly affect molecular brightness analysis. Therefore, in this study a simple correction model was described, taking into account quantified non-fluorescent state fractions, to finally allow accurate and unbiased determination of oligomerization. This way it was shown, that NEP forms homo-dimers within the cytoplasm of cells, whereas a 2.5-fold lower homo-dimer population was observed in the nucleus. Combining the subcellular localization dependent oligomeric state of NEP and several NEP mutants with their localization phenotypes, a regulation mechanism was proposed in which the translocation of NEP is regulated by transient masking and unmasking of its two NESs, which is supported by dimerization in the cytoplasm and monomerization in the nucleus of cells, respectively.

Page generated in 0.0121 seconds