• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular assemblies observed by atomic force microscopy

Cisneros Armas, David Alejandro 25 June 2007 (has links)
We use time-lapse AFM to visualize collagen fibrils self-assembly. A solution of acid-solubilized collagen was injected into the AFM fluid cell and fibril formation was observed in vitro. Single fibrils continuously grew and fused with each other until the supporting surface was completely covered by a nanoscopically well-defined collagen matrix. Laterally, the fibrils grew in steps of ~4 nm suggesting a two-step mechanism. In a first step, collagen molecules associated together. In the second step, these molecules rearranged into a structure called a microfibril. High-resolution AFM topographs revealed substructural details of the D-band architecture. These substructures correlated well with those revealed from positively stained collagen fibers imaged by transmission electron microscopy. Secondly, a covalent assembly approach to prepare membrane protein for AFM imaging that avoids crystallization was proposed. High-resolution AFM topographs can reveal structural details of single membrane proteins but, as a prerequisite, the proteins must be adsorbed to atomically flat mica and densely packed in a membrane to restrict their lateral mobility. Atomically flat gold, engineered proteins, and chemically modified lipids were combined to rapidly assemble immobile and fully oriented samples. The resulting AFM topographs of single membrane proteins were used to create averaged structures with a resolution approaching that of 2D crystals. Finally, the contribution of specific amino acid residues to the stability of membrane proteins was studied. Two structurally similar proteins sharing only 30% sequence identity were compared. Single-molecule atomic force microscopy and spectroscopy was used to detect molecular interactions stabilizing halorhodopsin (HR) and bacteriorhodopsin (BR). Their unfolding pathways and polypeptide regions that established stable segments were compared. Both proteins unfolded exactly via the same intermediates. This 3 Molecular Assemblies observed by AFM observation implies that these stabilizing regions result from comprehensive contacts of all amino acids within them and that different amino acid compositions can establish structurally indistinguishable energetic barriers. However, one additional unfolding barrier located in a short segment of helix E was detected for HR. This barrier correlated with a Pi-bulk interaction, which locally disrupts helix E and divides into two stable segments.
2

Binding forces in metallo-supramolecular coordination compounds

Gensler, Manuel 15 March 2017 (has links)
Multivalente Wechselwirkungen sind in diversen biomolekularen und supramolekularen Systemen anzutreffen. Gewöhnlich werden sie durch ihre thermische Stabilität charakterisiert. Doch auch das mechanische Reißverhalten ist relevant: Ein System mit großer Reißlänge (Verformbarkeit) weist zwar eine geringere Reißkraft auf, kann aber besser auf äußere Einflüsse ohne Bindungsbruch reagieren. Daher besteht ein zunehmendes Interesse an Modellen zur Vorhersage der mechanischen Stabilität multivalenter Wechselwirkungen. Einzelmolekül-Kraftspektroskopie (SMFS) ist eine nützliche Methode, um den Reißprozess nichtkovalenter Wechselwirkungen zu studieren. Im Rahmen dieser Dissertation wurden mono- und bivalenten Pyridine, komplexiert und verbunden durch Cu(II) und Zn(II), entworfen und untersucht. Die drei bivalenten Pyridine wiesen unterschiedlich flexible Rückgratstrukturen auf (flexibel, teilflexibel, steif). Überraschenderweise wurde ein anderer Trend für die Verformbarkeiten gemessen (flexibel > steif > teilflexibel). Durch Vergleich von experimentellen Daten mit ab-initio Berechnungen konnten komplexe Reißmechanismen vorgeschlagen werden: Das Lösungsmittel war entscheidend und führte zu wasserverbrückten Zwischenprodukten, was die Verformbarkeit aller Systeme stark erhöhte. Im bivalente System mit teilflexiblem Rückgrat, koordiniert durch Cu(II), rissen beide Bindungen gleichzeitig bei vergleichsweise großen Kräften. Die beiden anderen Systeme mit Cu(II) wurden in zweistufigen Prozessen voneinander getrennt, was kleinere Reißkräfte zur Folge hatte. Insbesondere das flexible System war zwar thermisch stabiler, brach aber leichter als das monovalente System. Damit wurde zum ersten Mal der große Einfluss des Rückgrats, bei sonst gleicher Art von Wechselwirkung, auf die mechanische Stabilität bivalenter Wechselwirkungen gezeigt. Außerdem ist das entwickelte Modellsystem sehr nützlich für weiterführende Untersuchungen in biologisch relevanten wässrigen Lösungsmitteln. / Multivalent interactions are ubiquitous in biomolecular and supramolecular systems. They are commonly characterized by their thermal stability in terms of average bond lifetime or equilibration constant. However, also mechanical stabilities are relevant: A system with high rupture length (malleability) has a lower rupture force, but can more easily adopt to external constraints without rupture. Thus it is of ever-increasing interest to find appropriate models that allow predictions on the mechanical stability of multivalent interactions. Single-molecule force spectroscopy (SMFS) is a powerful tool to study the rupture process of non-covalent interactions. In the present thesis, a comprehensive study on the mechanical stability of bivalent pyridine coordination compounds with the metal ions Cu(II) and Zn(II) was performed. Surprisingly, three different backbone flexibilities (high, intermediate, low) did not correlate with the measured malleabilities (high > low > intermediate). Instead, comparison between experimental results and ab-initio calculations revealed more complex underlying rupture mechanisms: Due to the aqueous environment, hydrogen bound complexes were formed and important intermediate structures that strongly increased malleabilities. Both interactions of the intermediately flexible bivalent system with Cu(II) broke simultaneous, yielding comparatively large rupture forces. The bivalent interactions of high and low backbone flexibility with Cu(II) broke stepwise at smaller forces. Although being thermally more stable, the highly flexible system even broke at lower forces than the monovalent system. Thereby it was shown for the first time, that rupture forces of similar systems can be tuned over a broad range, just by changing the connecting backbone structure. Furthermore, the developed approach is a rich toolkit to study further the balanced interplay between rupture force and malleability in biologically relevant aqueous solvents.
3

Single-Molecule Measurements of Complex Molecular Interactions in Membrane Proteins using Atomic Force Microscopy / Einzelmolekül-Messungen komplexer molekularer Wechselwirkungen in Membranproteinen unter Benutzung des Rasterkraftmikroskops

Sapra, K. Tanuj 04 April 2007 (has links) (PDF)
Single-molecule force spectroscopy (SMFS) with atomic force microscope (AFM) has advanced our knowledge of the mechanical aspects of biological processes, and helped us take big strides in the hitherto unexplored areas of protein (un)folding. One such virgin land is that of membrane proteins, where the advent of AFM has not only helped to visualize the difficult to crystallize membrane proteins at the single-molecule level, but also given a new perspective in the understanding of the interplay of molecular interactions involved in the construction of these molecules. My PhD work was tightly focused on exploiting this sensitive technique to decipher the intra- and intermolecular interactions in membrane proteins, using bacteriorhodopsin and bovine rhodopsin as model systems. Using single-molecule unfolding measurements on different bacteriorhodopsin oligomeric assemblies - trimeric, dimeric and monomeric - it was possible to elucidate the contribution of intra- and interhelical interactions in single bacteriorhodopsin molecules. Besides, intriguing insights were obtained into the organization of bacteriorhodopsin as trimers, as deduced from the unfolding pathways of the proteins from different assemblies. Though the unfolding pathways of bacteriorhodopsin from all the assemblies remained the same, the different occurrence probability of these pathways suggested a kinetic stabilization of bacteriorhodopsin from a trimer compared to that existing as a monomer. Unraveling the knot of a complex G-protein coupled receptor, rhodopsin, showed the existence of two structural states, a native, functional state, and a non-native, non-functional state, corresponding to the presence or absence of a highly conserved disulfide bridge, respectively. The molecular interactions in absence of the native disulfide bridge mapped onto the three-dimensional structure of native rhodopsin gave insights into the molecular origin of the neurodegenerative disease retinitis pigmentosa. This presents a novel technique to decipher molecular interactions of a different conformational state of the same molecule in the absence of a high-resolution X-ray crystal structure. Interestingly, the presence of ZnCl2 maintained the integrity of the disulfide bridge and the nature of unfolding intermediates. Moreover, the increased mechanical and thermodynamic stability of rhodopsin with bound zinc ions suggested a plausible role for the bivalent ion in rhodopsin dimerization and consequently signal transduction. Last but not the least, I decided to dig into the mysteries of the real mechanisms of mechanical unfolding with the help of well-chosen single point mutations in bacteriorhodopsin. The monumental work has helped me to solve some key questions regarding the nature of mechanical barriers that constitute the intermediates in the unfolding process. Of particular interest is the determination of altered occurrence probabilities of unfolding pathways in an energy landscape and their correlation to the intramolecular interactions with the help of bioinformatics tools. The kind of work presented here, in my opinion, will not only help us to understand the basic principles of membrane protein (un)folding, but also to manipulate and tune energy landscapes with the help of small molecules, proteins, or mutations, thus opening up new vistas in medicine and pharmacology. It is just a matter of a lot of hard work, some time, and a little bit of luck till we understand the key elements of membrane protein (un)folding and use it to our advantage.
4

Single-Molecule Measurements of Complex Molecular Interactions in Membrane Proteins using Atomic Force Microscopy

Sapra, K. Tanuj 01 March 2007 (has links)
Single-molecule force spectroscopy (SMFS) with atomic force microscope (AFM) has advanced our knowledge of the mechanical aspects of biological processes, and helped us take big strides in the hitherto unexplored areas of protein (un)folding. One such virgin land is that of membrane proteins, where the advent of AFM has not only helped to visualize the difficult to crystallize membrane proteins at the single-molecule level, but also given a new perspective in the understanding of the interplay of molecular interactions involved in the construction of these molecules. My PhD work was tightly focused on exploiting this sensitive technique to decipher the intra- and intermolecular interactions in membrane proteins, using bacteriorhodopsin and bovine rhodopsin as model systems. Using single-molecule unfolding measurements on different bacteriorhodopsin oligomeric assemblies - trimeric, dimeric and monomeric - it was possible to elucidate the contribution of intra- and interhelical interactions in single bacteriorhodopsin molecules. Besides, intriguing insights were obtained into the organization of bacteriorhodopsin as trimers, as deduced from the unfolding pathways of the proteins from different assemblies. Though the unfolding pathways of bacteriorhodopsin from all the assemblies remained the same, the different occurrence probability of these pathways suggested a kinetic stabilization of bacteriorhodopsin from a trimer compared to that existing as a monomer. Unraveling the knot of a complex G-protein coupled receptor, rhodopsin, showed the existence of two structural states, a native, functional state, and a non-native, non-functional state, corresponding to the presence or absence of a highly conserved disulfide bridge, respectively. The molecular interactions in absence of the native disulfide bridge mapped onto the three-dimensional structure of native rhodopsin gave insights into the molecular origin of the neurodegenerative disease retinitis pigmentosa. This presents a novel technique to decipher molecular interactions of a different conformational state of the same molecule in the absence of a high-resolution X-ray crystal structure. Interestingly, the presence of ZnCl2 maintained the integrity of the disulfide bridge and the nature of unfolding intermediates. Moreover, the increased mechanical and thermodynamic stability of rhodopsin with bound zinc ions suggested a plausible role for the bivalent ion in rhodopsin dimerization and consequently signal transduction. Last but not the least, I decided to dig into the mysteries of the real mechanisms of mechanical unfolding with the help of well-chosen single point mutations in bacteriorhodopsin. The monumental work has helped me to solve some key questions regarding the nature of mechanical barriers that constitute the intermediates in the unfolding process. Of particular interest is the determination of altered occurrence probabilities of unfolding pathways in an energy landscape and their correlation to the intramolecular interactions with the help of bioinformatics tools. The kind of work presented here, in my opinion, will not only help us to understand the basic principles of membrane protein (un)folding, but also to manipulate and tune energy landscapes with the help of small molecules, proteins, or mutations, thus opening up new vistas in medicine and pharmacology. It is just a matter of a lot of hard work, some time, and a little bit of luck till we understand the key elements of membrane protein (un)folding and use it to our advantage.

Page generated in 0.0546 seconds