• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A atividade imunomoduladora de ArtinM sobre o curso da infecção por Cryptococcus gattii / The immunomodulatory activity of ArtinM on the course of Cryptococcus gattii infection

Brito, Patrícia Kellen Martins Oliveira 10 October 2018 (has links)
As infecções fúngicas invasivas são um problema global em saúde pública que acometem milhões de vidas anualmente. Entre os principais gêneros causadores dessas doenças, a espécie Cryptococcus gattii destaca-se por acometer indivíduos imunocompetentes e imunossuprimidos. Esse patógeno atua no bloqueio da diferenciação das células T helper (Th) 1 (Th1) e 17 (Th17) através da atenuação da resposta pró-inflamatória no tecido pulmonar. Em vista da capacidade imunomoduladora de ArtinM em induzir uma resposta imunológica Th1 e Th17 através da indução da produção de IL-12 por células apresentadoras de antígenos (APCs), e pelo efeito da lectina em células T CD4+, esse efeito imunomodulador de ArtinM promoveu o controle da infecção por P. brasiliensis e C. albicans. Dessa forma, investigamos os efeitos da administração profilática ou terapêutica de ArtinM no controle da infecção experimental por C. gattii. Constatamos que a infecção por C. gattii rapidamente progride no tecido pulmonar, assim como há uma disseminação completa para o coração, fígado, rim, baço, cérebro e sangue após 21 dias de infeção. Na análise do pulmão, o perfil citocínico apresentou baixos níveis de citocinas pró-inflamatórias, e observamos um aumento na expressão relativa dos marcadores de polarização para o perfil M2 (Arginase-1 e YM-1), em todo período analisado. Visto a capacidade reguladora do C. gattii sobre o sistema imunitário do hospedeiro, avaliamos o efeito da administração profilática de ArtinM sobre o curso dessa infecção. Ao longo de 42 dias de infecção, o grupo tratado com ArtinM apresentou uma redução da carga fúngica pulmonar nos dias 28 e 35 pós-infecção, e os níveis de IFN-?, IL-17 e TNF-? aumentaram significativamente no grupo ArtinM. Esse efeito imunomodulador da administração profilática de ArtinM sobre o modelo de infecção experimental por C. gattii levou-nos a avaliar o efeito da administração terapêutica de ArtinM no curso dessa infecção. Essa nova proposta de aplicação de ArtinM resultou na redução da carga fúngica pulmonar de C. gattii após 21 dias de infecção, comparado com o grupo controle. A administração terapêutica de ArtinM foi capaz de elevar o número absoluto de neutrófilos e linfócitos no sangue periférico dos animais infectados, porém os níveis de citocinas não diferiram entre os grupos ArtinM e controle. Além disso, o grupo tratado com ArtinM apresentou menor frequência de células T CD4+ no baço. Diante do efeito imunomodulador a administração profilática ou terapêutica de ArtinM que promoveu um controle parcial da infecção por C. gattii, partimos para a associação desse agente imunomodulador com o antifúngicoR e s u m o | viii Fluconazol. Verificamos que os animais tratados com ArtinM em associação com fluconazol também apresentaram uma redução da carga fúngica pulmonar em comparação ao grupo controle, indicando que ArtinM é passível de ser associada com a terapia convencional antifúngica. Portanto, nossos dados evidenciaram que a atividade imunomodulatória de ArtinM, através da administração profilática ou terapêutica, foi evidenciada no curso da infecção por C. gattii e favoreceu a imunidade do hospedeiro promovendo uma redução parcial da carga fúngica pulmonar / Invasive fungal diseases are a global public health problem, that affects millions of individuals each year. Among the species that cause these diseases, Cryptococcus gattii is a major because affects immunosuppressed and immunocompetent individuals. C. gattii regulates the differentiation of helper (Th) T cells 1 (Th1) and 17 (Th17) by attenuating the proinflammatory response in the lungs. We know that the immunomodulatory capacity of ArtinM to induce the Th1 and Th17 immune response through IL-12 production by antigen presenting cells (APCs) and the CD4+ T cells activation by direct effect of ArtinM, these activities of ArtinM promoted the control of P. brasiliensis and C. albicans infection. Thus, we investigated the effects of prophylactic or therapeutic administration of ArtinM in the control of C. gattii infection. We found that C. gattii infection rapidly increase in the lungs and disseminate to the heart, liver, kidney, spleen, brain and blood after 21 days of infection. In the lung analysis, the cytokine profile showed low levels of proinflammatory cytokines and we observed an increase in the relative expression of the polarization markers for the M2 macrophages (Arginase-1 and YM-1) for all period. Given the regulatory ability of C. gattii on the host immune response, we evaluated the effect of prophylactic administration of ArtinM on the course of C. gattii infection. During 42 days of infection, the ArtinM-treated group had a reduction in the pulmonary fungal burden on days 28 and 35 post-infection, and levels of IFN-?, IL-17 and TNF-? were significantly increased in the ArtinM group. This immunomodulatory effect of prophylactic administration of ArtinM on the C. gattii infection led us to evaluate the effect of the therapeutic administration of ArtinM on the course of this infection. This new strategy for the ArtinM administration promoted a reduction in the lung fungal burden of C. gattii after 21 days of infection compared to control group. Therapeutic administration of ArtinM was able to increase the absolute number of neutrophils and lymphocytes in the peripheral blood of infected mice, but the cytokine levels did not differ between the ArtinM and control groups. In addition, the ArtinM-treated group showed decrease of the CD4+ T cell frequency in the spleen. Considering the immunomodulatory effect, the prophylactic or therapeutic administration of ArtinM promoted a partial control of C. gattii infection, and instigate us to investigate the association of ArtinM and Fluconazole. We found that the treatment with ArtinM in combination with fluconazole also promoted a reduction in the pulmonary fungal burden, which suggested that ArtinM works well inA b s t r a c t | xi association with antifungal drugs. Therefore, our data showed that the immunomodulatory activity of ArtinM, via prophylactic or therapeutic administration, was evidenced in the course of C. gattii infection and contributed the host immune response to reduce the lung fungal burden
2

Caracterização estrutural e avaliação de aspectos funcionais de galectinas humanas do grupo tandem-repeat / Structural characterization and evaluation of functional aspects of human galectins from tandem-repeat group

Bonalumi, Joane Kathelen Rustiguel 12 November 2014 (has links)
As galectinas, proteínas que compartilham características como afinidade por ?-galactosídeos e a presença de um domínio de reconhecimento ao carboidrato (CRD), tem como importante papel a decodificação de mensagens moleculares. As galectinas são encontradas em uma grande variedade de células e tecidos animais e estão envolvidas em diversos processos celulares relacionados a resposta imune e inflamatória. O grupo tandem-repeat das galectinas é formado por proteínas que apresentam dois CRDs distintos (CRD1 e CRD2) conectados por um peptídeo de ligação, ao qual pertencem as galectinas-4 e -12 humanas, alvos de nosso estudo. Durante o desenvolvimento do presente projeto foram utilizadas abordagens multidisciplinares através de técnicas biofísicas, cristalográficas, computacionais e imunoquímicas. Foi iniciado o estudo de caracterização estrutural da galectina-4 humana (hGal4) e seus domínios hGal4-CRD1 e hGal4-CRD2, de forma independente, através da produção heteróloga das proteínas e ensaios de estabilidade térmica e cristalização. As estruturas cristalográficas dos domínios foram determinadas a 1,48 e 2,46 Å de resolução, respectivamente e utilizadas para a construção de um modelo para a hGal4. Com base nos estudos de dinâmica molecular e estabilidade térmica foi possível propor um modelo de interação entre os CRDs através do peptídeo de ligação. Ensaios de dinâmica da hGal4 com LacNAc sugeriram uma diferença de plasticidade dos CRDs no reconhecimento do ligante. Foram também realizadas incessantes tentativas de desenvolver um protocolo de expressão heteróloga para as isoformas e domínios da galectina-12 humana (hGal12). Como resultado, observamos uma alta tendência à formação de corpos de inclusão e agregados resistentes a desnaturação, além da susceptibilidade ao ataque proteolítico. Os modelos estruturais dos domínios da hGal12 não permitiram identificar nenhuma característica que justificasse o comportamento das proteínas. Foram realizados estudos de localização celular em células HL-60 e foi possível identificar a presença da hGal12 na superfície das gotas de lipídio, organelas responsáveis pelo armazenamento de energia e o processo de catabolismo celular. A alta insolubilidade observada para as isoformas e domínios da hGal12, a sua localização em gotas de lipídeos, a divergência evolutiva da hGal12 quando comparada com outras galectinas do mesmo grupo e incluindo o fato de um dos CRDs não apresentar os requerimentos estruturais básicos para ligar ?-galactosídeos, nos leva a especular se essa proteína estaria, na verdade, sendo expressa como parte de um heterocomplexo proteico, que estabilizaria a estrutura da hGal12 e a endereçaria para as gotas de lipídeo. Em nossa hipótese, o domínio hGal12-CRD2 poderia ter evoluído para favorecer a interação com outros parceiros macromoleculares. Devido ao importante papel desempenhado pelas galectinas em inúmeros processos celulares, os resultados aqui obtidos representam uma importante contribuição no entendimento do papel que as galectinas hGal4 e hGal12 exercem nos diferentes eventos celulares, além de fornecem ferramentas experimentais para desenvolvimento de futuros estudos funcionais. / Galectins are proteins that share characteristics such as affinity for ?-galactosides and the presence of a carbohydrate recognition domain (CRD). They belong to a family of proteins that display the important role of decoding molecular messages. Galectins are found in a variety of cell types and are involved in several biological phenomena related to immune response and inflammation. The tandem-repeat group of galectins consists of proteins with two distinct CRDs (CRD1 and CRD2) connected by a peptide linker, in which belong galectins-4 and -12, targets of our study. During the development of the present project a multidisciplinary approach was used including the use of biophysical, crystallographic, computational and immunochemical techniques. The structural characterization of human galectin-4 (hGal4) and its hGal4-CRD1 and hGal4-CRD2 independent domains was initiated by their heterologous protein production, thermal stability and crystallization assays. The crystallographic structure of domains were determined at 1.48 e 2.46 Å resolution, respectively, and used for constructing a model for hGal4. Based on molecular dynamics and thermal stability studies we propose a model of interaction between CRDs mediated by linker peptide. Dynamics simulation of hGal4 with LacNAc suggested a difference in plasticity between CRDs and ligand recognition. In addition, several attempts have been made towards the development of a protocol for expression of isoforms and independent domains from human galectin-12 (hGal12). As result, we observed a high tendency to body inclusion formation and denaturing resistant aggregates, besides high susceptibility to proteolytic attack. Structural models for the hGal12 domains did not allow the identification of any feature to justify proteins behavior. Cell location studies in HL-60 cells were performed and hGal12 was found to be located on the surface of lipid droplets, organelles responsible for energy storage and catabolism. The high insolubility displayed by isoforms and domains from hGal12, together with its location on lipid droplets, the evolutionary divergence of hGal12 compared to tandem-repeat proteins, and the fact that hGal12-CRD2 does not present the structural requirements for ?-galactosides binding, suggest that hGal12 is, in fact, expressed as part of a protein complex that could both stabilize hGal12 structure and guide it to the lipid droplets. In our hypothesis, the hGal12-CRD2 could have evolved in order to favor the interaction with other macromolecular partners. Due to crucial roles displayed by galectins in innumerous biological process, we believe that our results represent an important contribution for the understanding of hGal4 e hGal12 proteins roles within the cell, besides providing experimental tools for the development of further functional studies.
3

Caracterização estrutural e avaliação de aspectos funcionais de galectinas humanas do grupo tandem-repeat / Structural characterization and evaluation of functional aspects of human galectins from tandem-repeat group

Joane Kathelen Rustiguel Bonalumi 12 November 2014 (has links)
As galectinas, proteínas que compartilham características como afinidade por ?-galactosídeos e a presença de um domínio de reconhecimento ao carboidrato (CRD), tem como importante papel a decodificação de mensagens moleculares. As galectinas são encontradas em uma grande variedade de células e tecidos animais e estão envolvidas em diversos processos celulares relacionados a resposta imune e inflamatória. O grupo tandem-repeat das galectinas é formado por proteínas que apresentam dois CRDs distintos (CRD1 e CRD2) conectados por um peptídeo de ligação, ao qual pertencem as galectinas-4 e -12 humanas, alvos de nosso estudo. Durante o desenvolvimento do presente projeto foram utilizadas abordagens multidisciplinares através de técnicas biofísicas, cristalográficas, computacionais e imunoquímicas. Foi iniciado o estudo de caracterização estrutural da galectina-4 humana (hGal4) e seus domínios hGal4-CRD1 e hGal4-CRD2, de forma independente, através da produção heteróloga das proteínas e ensaios de estabilidade térmica e cristalização. As estruturas cristalográficas dos domínios foram determinadas a 1,48 e 2,46 Å de resolução, respectivamente e utilizadas para a construção de um modelo para a hGal4. Com base nos estudos de dinâmica molecular e estabilidade térmica foi possível propor um modelo de interação entre os CRDs através do peptídeo de ligação. Ensaios de dinâmica da hGal4 com LacNAc sugeriram uma diferença de plasticidade dos CRDs no reconhecimento do ligante. Foram também realizadas incessantes tentativas de desenvolver um protocolo de expressão heteróloga para as isoformas e domínios da galectina-12 humana (hGal12). Como resultado, observamos uma alta tendência à formação de corpos de inclusão e agregados resistentes a desnaturação, além da susceptibilidade ao ataque proteolítico. Os modelos estruturais dos domínios da hGal12 não permitiram identificar nenhuma característica que justificasse o comportamento das proteínas. Foram realizados estudos de localização celular em células HL-60 e foi possível identificar a presença da hGal12 na superfície das gotas de lipídio, organelas responsáveis pelo armazenamento de energia e o processo de catabolismo celular. A alta insolubilidade observada para as isoformas e domínios da hGal12, a sua localização em gotas de lipídeos, a divergência evolutiva da hGal12 quando comparada com outras galectinas do mesmo grupo e incluindo o fato de um dos CRDs não apresentar os requerimentos estruturais básicos para ligar ?-galactosídeos, nos leva a especular se essa proteína estaria, na verdade, sendo expressa como parte de um heterocomplexo proteico, que estabilizaria a estrutura da hGal12 e a endereçaria para as gotas de lipídeo. Em nossa hipótese, o domínio hGal12-CRD2 poderia ter evoluído para favorecer a interação com outros parceiros macromoleculares. Devido ao importante papel desempenhado pelas galectinas em inúmeros processos celulares, os resultados aqui obtidos representam uma importante contribuição no entendimento do papel que as galectinas hGal4 e hGal12 exercem nos diferentes eventos celulares, além de fornecem ferramentas experimentais para desenvolvimento de futuros estudos funcionais. / Galectins are proteins that share characteristics such as affinity for ?-galactosides and the presence of a carbohydrate recognition domain (CRD). They belong to a family of proteins that display the important role of decoding molecular messages. Galectins are found in a variety of cell types and are involved in several biological phenomena related to immune response and inflammation. The tandem-repeat group of galectins consists of proteins with two distinct CRDs (CRD1 and CRD2) connected by a peptide linker, in which belong galectins-4 and -12, targets of our study. During the development of the present project a multidisciplinary approach was used including the use of biophysical, crystallographic, computational and immunochemical techniques. The structural characterization of human galectin-4 (hGal4) and its hGal4-CRD1 and hGal4-CRD2 independent domains was initiated by their heterologous protein production, thermal stability and crystallization assays. The crystallographic structure of domains were determined at 1.48 e 2.46 Å resolution, respectively, and used for constructing a model for hGal4. Based on molecular dynamics and thermal stability studies we propose a model of interaction between CRDs mediated by linker peptide. Dynamics simulation of hGal4 with LacNAc suggested a difference in plasticity between CRDs and ligand recognition. In addition, several attempts have been made towards the development of a protocol for expression of isoforms and independent domains from human galectin-12 (hGal12). As result, we observed a high tendency to body inclusion formation and denaturing resistant aggregates, besides high susceptibility to proteolytic attack. Structural models for the hGal12 domains did not allow the identification of any feature to justify proteins behavior. Cell location studies in HL-60 cells were performed and hGal12 was found to be located on the surface of lipid droplets, organelles responsible for energy storage and catabolism. The high insolubility displayed by isoforms and domains from hGal12, together with its location on lipid droplets, the evolutionary divergence of hGal12 compared to tandem-repeat proteins, and the fact that hGal12-CRD2 does not present the structural requirements for ?-galactosides binding, suggest that hGal12 is, in fact, expressed as part of a protein complex that could both stabilize hGal12 structure and guide it to the lipid droplets. In our hypothesis, the hGal12-CRD2 could have evolved in order to favor the interaction with other macromolecular partners. Due to crucial roles displayed by galectins in innumerous biological process, we believe that our results represent an important contribution for the understanding of hGal4 e hGal12 proteins roles within the cell, besides providing experimental tools for the development of further functional studies.
4

UNDERSTANDING CARBOHYDRATE RECOGNITION MECHANISMS IN NON-CATALYTIC PROTEINS THROUGH MOLECULAR SIMULATIONS

Kognole, Abhishek A. 01 January 2018 (has links)
Non-catalytic protein-carbohydrate interactions are an essential element of various biological events. This dissertation presents the work on understanding carbohydrate recognition mechanisms and their physical significance in two groups of non-catalytic proteins, also called lectins, which play key roles in major applications such as cellulosic biofuel production and drug delivery pathways. A computational approach using molecular modeling, molecular dynamic simulations and free energy calculations was used to study molecular-level protein-carbohydrate and protein-protein interactions. Various microorganisms like bacteria and fungi secret multi-modular enzymes to deconstruct cellulosic biomass into fermentable sugars. The carbohydrate binding modules (CBM) are non-catalytic domains of such enzymes that assist the catalytic domains to recognize the target substrate and keep it in proximity. Understanding the protein-carbohydrate recognition mechanisms by which CBMs selectively bind substrate is critical to development of enhanced biomass conversion technology. We focus on CBMs that target both oligomeric and non-crystalline cellulose while exhibiting various similarities and differences in binding specificity and structural properties; such CBMs are classified as Type B CBMs. We show that all six cellulose-specific Type B CBMs studied in this dissertation can recognize the cello-oligomeric ligands in bi-directional fashion, meaning there was no preference towards reducing or non-reducing end of ligand for the cleft/groove like binding sites. Out of the two sandwich and twisted forms of binding site architectures, twisted platform turned out to facilitate tighter binding also exhibiting longer binding sites. The exterior loops of such binding sites were specifically identified by modeling the CBMs with non-crystalline cellulose showing that high- and low-affinity binding site may arise based on orientation of CBM while interacting with non-crystalline substrate. These findings provide various insights that can be used for further understanding of tandem CBMs and for various CBM based biotechnological applications. The later part of this dissertation reports the identification of a physiological ligand for a mammalian glycoprotein YKL-40 that has been only known as a biomarker in various inflammatory diseases and cancers. It has been shown to bind to oligomers of chitin, but there is no known function of YKL-40, as chitin production in the human body has never been reported. Possible alternative ligands include proteoglycans, polysaccharides, and fibers such as collagen, all of which make up the mesh comprising the extracellular matrix. It is likely that YKL-40 is interacting with these alternative polysaccharides or proteins within the body, extending its function to cell biological roles such as mediating cellular receptors and cell adhesion and migration. We considered the feasibility of polysaccharides, including cello-oligosaccharides, hyaluronan, heparan sulfate, heparin, and chondroitin sulfate, and collagen-like peptides as physiological ligands for YKL-40. Our simulation results suggest that chitohexaose and hyaluronan preferentially bind to YKL-40 over collagen, and hyaluronan is likely the preferred physiological ligand, as the negatively charged hyaluronan shows enhanced affinity for YKL-40 over neutral chitohexaose. Collagen binds in two locations at the YKL-40 surface, potentially related to a role in fibrillar formation. Finally, heparin non- specifically binds at the YKL-40 surface, as predicted from structural studies. Overall, YKL-40 likely binds many natural ligands in vivo, but its concurrence with physical maladies may be related to the associated increases in hyaluronan.
5

Biophysical chemistry of lipopolysaccharide specific bacteriophages

Andres, Dorothee January 2012 (has links)
Carbohydrate recognition is a ubiquitous principle underlying many fundamental biological processes like fertilization, embryogenesis and viral infections. But how carbohydrate specificity and affinity induce a molecular event is not well understood. One of these examples is bacteriophage P22 that binds and infects three distinct Salmonella enterica (S.) hosts. It recognizes and depolymerizes repetitive carbohydrate structures of O antigen in its host´s outer membrane lipopolysaccharide molecule. This is mediated by tailspikes, mainly β helical appendages on phage P22 short non contractile tail apparatus (podovirus). The O antigen of all three Salmonella enterica hosts is built from tetrasaccharide repeating units consisting of an identical main chain with a distinguished 3,6 dideoxyhexose substituent that is crucial for P22 tailspike recognition: tyvelose in S. Enteritidis, abequose in S. Typhimurium and paratose in S. Paratyphi. In the first study the complexes of P22 tailspike with its host’s O antigen octasaccharide were characterized. S. Paratyphi octasaccharide binds less tightly (ΔΔG≈7 kJ/mol) to the tailspike than the other two hosts. Crystal structure analysis of P22 tailspike co crystallized with S. Paratyphi octasaccharides revealed different interactions than those observed before in tailspike complexes with S. Enteritidis and S. Typhimurium octasaccharides. These different interactions occur due to a structural rearrangement in the S. Paratyphi octasaccharide. It results in an unfavorable glycosidic bond Φ/Ψ angle combination that also had occurred when the S. Paratyphi octasaccharide conformation was analyzed in an aprotic environment. Contributions of individual protein surface contacts to binding affinity were analyzed showing that conserved structural waters mediate specific recognition of all three different Salmonella host O antigens. Although different O antigen structures possess distinct binding behavior on the tailspike surface, all are recognized and infected by phage P22. Hence, in a second study, binding measurements revealed that multivalent O antigen was able to bind with high avidity to P22 tailspike. Dissociation rates of the polymer were three times slower than for an octasaccharide fragment pointing towards high affinity for O antigen polysaccharide. Furthermore, when phage P22 was incubated with lipopolysaccharide aggregates before plating on S. Typhimurium cells, P22 infectivity became significantly reduced. Therefore, in a third study, the function of carbohydrate recognition on the infection process was characterized. It was shown that large S. Typhimurium lipopolysaccharide aggregates triggered DNA release from the phage capsid in vitro. This provides evidence that phage P22 does not use a second receptor on the Salmonella surface for infection. P22 tailspike binding and cleavage activity modulate DNA egress from the phage capsid. DNA release occurred more slowly when the phage possessed mutant tailspikes with less hydrolytic activity and was not induced if lipopolysaccharides contained tailspike shortened O antigen polymer. Furthermore, the onset of DNA release was delayed by tailspikes with reduced binding affinity. The results suggest a model for P22 infection induced by carbohydrate recognition: tailspikes position the phage on Salmonella enterica and their hydrolytic activity forces a central structural protein of the phage assembly, the plug protein, onto the host´s membrane surface. Upon membrane contact, a conformational change has to occur in the assembly to eject DNA and pilot proteins from the phage to establish infection. Earlier studies had investigated DNA ejection in vitro solely for viruses with long non contractile tails (siphovirus) recognizing protein receptors. Podovirus P22 in this work was therefore the first example for a short tailed phage with an LPS recognition organelle that can trigger DNA ejection in vitro. However, O antigen binding and cleaving tailspikes are widely distributed in the phage biosphere, for example in siphovirus 9NA. Crystal structure analysis of 9NA tailspike revealed a complete similar fold to P22 tailspike although they only share 36 % sequence identity. Moreover, 9NA tailspike possesses similar enzyme activity towards S. Typhimurium O antigen within conserved amino acids. These are responsible for a DNA ejection process from siphovirus 9NA triggered by lipopolysaccharide aggregates. 9NA expelled its DNA 30 times faster than podovirus P22 although the associated conformational change is controlled with a similar high activation barrier. The difference in DNA ejection velocity mirrors different tail morphologies and their efficiency to translate a carbohydrate recognition signal into action. / Kohlenhydraterkennung ist ein fundamentales Prinzip vieler biologischer Prozesse wie z.B. Befruchtung, Embryogenese und virale Infektionen. Wie aber Kohlenhydratspezifität und –affinität in ein molekulares Ereignis übersetzt werden, ist nicht genau verstanden. Ein Beispiel für ein solches Ereignis ist die Infektion des Bakteriophage P22, der drei verschiedene Salmonella enterica (S.) Wirte besitzt. Er erkennt und depolymerisiert die repetitiven Einheiten des O Antigens im Lipopolysaccharid, das sich in der äußeren Membran seines Wirtes befindet. Dieser Schritt wird durch die Tailspikes vermittelt, β helicale Bestandteile des kurzen, nicht kontraktilen Schwanzapparates von P22 (Podovirus). Das O Antigen aller drei Salmonella enterica Wirte besteht aus sich wiederholenden Tetrasacchariden. Sie enthalten die gleiche Hauptkette aber eine spezifische 3,6 Didesoxyhexose Seitenkette, die für die P22 Tailspikeerkennung essentiell ist: Tyvelose in S. Enteritidis, Abequose in S. Typhimurium und Paratose in S. Paratyphi. Im ersten Teil der Arbeit wurde die Komplexbildung von P22 Tailspike mit O Antigen Octasaccharidfragmenten der drei verschiedenen Wirte untersucht. S. Paratyphi Octasaccharide binden mit einer geringeren Affinität (ΔΔG≈7 kJ/mol) an den Tailspike als die beiden anderen Wirte. Die Kristallstrukturanalyse des S. Paratyphi Octasaccharides komplexiert mit P22 Tailspike offenbarten unterschiedliche Interkationen als vorher mit S. Enteritidis und S. Typhimurium Oktasaccharidkomplexen mit Tailspike beobachtet wurden. Diese unterschiedlichen Interaktionen beruhen auf einer strukturellen Änderung in den Φ/Ψ Winkeln der glykosidischen Bindung. Die Beiträge von verschiedenen Proteinoberflächenkontakten zur Affnität wurden untersucht und zeigten, dass konservierte Wasser in der Struktur die spezifische Erkennung aller drei Salmonella Wirte vermittelt. Obwohl die verschiedenen O Antigen Strukturen unterschiedliches Bindungsverhalten auf der Tailspikeoberfläche zeigen, werden alle vom Phagen P22 erkannt und infiziert. Daher wurde in einer zweiten Studie die multivalente Bindung zwischen P22 Tailspike und O Antigen charakterisiert. Die Dissoziationskonstanten des Polymers waren drei Mal langsamer als für das Oktasaccharid allein, was auf eine hohe Affinität des O Antigens schließen lässt. Zusätzlich wurde gezeigt, dass die Aggregate des Lipopolysaccharids in der Lage sind, die Infektiösität vom P22 Phagen zu reduzieren. Ausgehend davon wurde in einer dritten Studie die Bedeutung der Kohlenhydrat Erkennung auf den Infektionsprozess untersucht. Große S. Typhimurium Lipopolysaccharide Aggregate bewirkten die DNA Freisetzung vom P22 Kapsid. Dies deutet darauf, dass der P22 Phage keinen weiteren Rezeptor für die Infektion auf der Oberflächen seines Wirtes verwendet. Zusätzlich moduliert die P22 Tailspike Aktivität den Ausstoss der DNA vom P22 Phagen: Er ist langsamer, wenn der Phage Tailspikes besitzt, die weniger hydrolytisch aktiv sind und wurde nicht induziert, wenn Lipopolysaccharid eingesetzt wurde, dass zuvor mit Tailspike hydrolysiert wurde. Darüber hinaus wurde der Start der DNA Ejektion verzögert, wenn Tailspikes mit verminderter Affinität am Phagen vorhanden waren. Die Ergebnisse führten zu einem Modell für die Infektion von P22: Tailspikes positionieren den Phagen auf Salmonella enterica und ihre Aktivität drückt ein zentrales Strukturprotein des Phagen, das Stöpselprotein, auf die Membranoberfläche. Aufgrund des Membrankontaktes findet eine Konformationsänderung statt die zur Ejektion der Pilotproteine und zur Infektion führt. Vorhergehende Studien haben bisher nur die DNA Ejektion in vitro für Viren mit langen, nicht kontraktilen Schwänzen (Siphoviren) mit Proteinrezeptoren untersucht. In dieser Arbeit wurde das erste Mal die DNA Ejektion für einen Podovirus mit LPS Erkennung in vitro gezeigt. Die O Antigen Erkennung und Spaltung durch Tailspikeproteine gibt es häufig in der Phagenbiosphere, z.B. am Siphovirus 9NA. Die Kristallstrukturanalyse von 9NA Tailspike zeigt eine komplett gleiche Struktur, obwohl beide Proteine nur zu 36% Sequenzidentität besitzen. Zusätzlich hat 9NA Tailspike ähnliche enzymatische Eigenschaften. Diese ist für den DNA Ejektionsprozess im Siphovirus 9NA verantwortlich, der auch durch LPS Agreggate induziert wird. 9NA stößt dabei seine DNA 30 Mal schneller aus als Podovirus P22 obwohl die damit verbundene Konformationsänderung mit einer ähnlich hohen Aktivierungsbarriere kontrolliert wird. Daher spiegeln die Unterschiede in der DNA Ejektionsgeschwindigkeit der verschiedenen Tailmorphologien die Effezienz wieder, mit der die spezifische Kohlenhydraterkennung in ein Signal umgewandelt wird.
6

Investigation of Cooperativity between Statistical Rebinding and the Chelate Effect on DNA Scaffolded Multivalent Binders as a Method for Developing High Avidity Ligands to target the C-type Lectin Langerin

Bachem, Gunnar 29 April 2021 (has links)
Aufgrund der Fähigkeit von Langerhans Zellen, welche den C-Typ Lektin (CTL) Rezeptor Langerin exprimieren, Antigene zu internalisieren und T-Zellen zu präsentieren, wurde Langerin als attraktives Ziel für neue Immunotherapien erkannt. Langerin kann Pathogene wie z.B. Viren erkennen, die zur Erhöhung der Avidität Kohlenhydratliganden multivalent präsentieren, da die monovalenten Kohlenhydratliganden nur niedrige Affinitäten für Langerin aufweisen. Die natürlichen monovalenten Kohlenhydratliganden besitzen nur niedrige Affinitäten für Langerin. Inspiriert durch die Natur stellt Multivalenz eine Strategie zur Überwindung der schwachen CTL-Kohlenhydrat-Wechselwirkung dar. Im Gegensatz zur hochmultivalenten Präsentation von Liganden mit undefinierter Anordnung hat sich diese Arbeit zum Ziel gesetzt auch die Ökonomie der Liganden zu optimieren, indem Liganden auf einer DNA Gerüststruktur so präsentiert wurden, dass sie die Distanz zwischen den Bindungstaschen des Homotrimers Langerin wiederspiegeln. Eine Untersuchung der relevanten multivalenten Bindungsmechanismen führte zu einer Anordnung der Liganden, die sowohl statistisches Rebinding als auch den Chelate Effekt einbezog. Der Rebinding Effekt wurde als Mittel erkannt, dass nicht nur die Avidität des Liganden an einer Bindungstasche erhöht, sondern auch ausgenutzt werden kann, um den Chelate Effekt zu amplifizieren. Diese Methode stellt eine Möglichkeit dar niedrige oder nicht vorhandene Multivalenzeffekte bei der bivalenten Präsentation von Liganden zu überwinden, wenn hochaffine Liganden nicht zur Verfügung stehen. Eine Kombination dieser Strategie mit der Entwicklung eines neuen selektiven Liganden für Langerin führte zu dem stärksten bekannten Langerinbinder (IC50 = 300 nM). Die Ligand-PNA-DNA Konstrukte wurden selektiv von Langerin exprimierenden Zellen bei nanomolaren Konzentrationen internalisiert und stellen ein System dar, welches in Zukunft für den Transport von Beladungen Anwendung finden könnte. / Targeting the C-type lectin (CTL) langerin has received increasing attention as a novel immunotherapy strategy due to the capacity of Langerhans cells, which express langerin, to endocytose and cross-present antigens to T-cells. Langerin recognizes pathogens such as viruses, which present carbohydrates in a multivalent fashion to increase avidity as the monovalent carbohydrate ligands only display low affinity for langerin. Inspired by nature, multivalency has therefore been a key tool for overcoming the low affinities of CTL-carbohydrate interactions. In contrast to highly multivalent ligand presentation with undefined arrangements this work strove to optimize ligand economy by designing bivalent ligands that take the distance between the binding sites of the homotrimeric langerin into consideration by precise arrangement of ligands on DNA-based scaffolds. Studying the multivalent mechanisms at work led us to the design of ligands that take both statistical rebinding and the chelate effect into account. The rebinding effect was recognized as a tool that not only increases ligand avidity at a single binding site but in addition can be exploited to amplify the chelate effect. This method provides a solution for overcoming the low or non-existing multivalency effects when bivalently presenting low affinity ligands on a rigid scaffold if high affinity ligands are unavailable. A combination of this arrangement strategy with the development of a first langerin selective glycomimetic ligand led to the most potent molecularly defined langerin binder to date (IC50 = 300 nM). The ligand-PNA-DNA constructs were selectively internalized by langerin expressing cells at nanomolar concentrations and constitute a delivery platform for the future transport of cargo to Langerhans cells.

Page generated in 0.1105 seconds