• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biophysical chemistry of lipopolysaccharide specific bacteriophages

Andres, Dorothee January 2012 (has links)
Carbohydrate recognition is a ubiquitous principle underlying many fundamental biological processes like fertilization, embryogenesis and viral infections. But how carbohydrate specificity and affinity induce a molecular event is not well understood. One of these examples is bacteriophage P22 that binds and infects three distinct Salmonella enterica (S.) hosts. It recognizes and depolymerizes repetitive carbohydrate structures of O antigen in its host´s outer membrane lipopolysaccharide molecule. This is mediated by tailspikes, mainly β helical appendages on phage P22 short non contractile tail apparatus (podovirus). The O antigen of all three Salmonella enterica hosts is built from tetrasaccharide repeating units consisting of an identical main chain with a distinguished 3,6 dideoxyhexose substituent that is crucial for P22 tailspike recognition: tyvelose in S. Enteritidis, abequose in S. Typhimurium and paratose in S. Paratyphi. In the first study the complexes of P22 tailspike with its host’s O antigen octasaccharide were characterized. S. Paratyphi octasaccharide binds less tightly (ΔΔG≈7 kJ/mol) to the tailspike than the other two hosts. Crystal structure analysis of P22 tailspike co crystallized with S. Paratyphi octasaccharides revealed different interactions than those observed before in tailspike complexes with S. Enteritidis and S. Typhimurium octasaccharides. These different interactions occur due to a structural rearrangement in the S. Paratyphi octasaccharide. It results in an unfavorable glycosidic bond Φ/Ψ angle combination that also had occurred when the S. Paratyphi octasaccharide conformation was analyzed in an aprotic environment. Contributions of individual protein surface contacts to binding affinity were analyzed showing that conserved structural waters mediate specific recognition of all three different Salmonella host O antigens. Although different O antigen structures possess distinct binding behavior on the tailspike surface, all are recognized and infected by phage P22. Hence, in a second study, binding measurements revealed that multivalent O antigen was able to bind with high avidity to P22 tailspike. Dissociation rates of the polymer were three times slower than for an octasaccharide fragment pointing towards high affinity for O antigen polysaccharide. Furthermore, when phage P22 was incubated with lipopolysaccharide aggregates before plating on S. Typhimurium cells, P22 infectivity became significantly reduced. Therefore, in a third study, the function of carbohydrate recognition on the infection process was characterized. It was shown that large S. Typhimurium lipopolysaccharide aggregates triggered DNA release from the phage capsid in vitro. This provides evidence that phage P22 does not use a second receptor on the Salmonella surface for infection. P22 tailspike binding and cleavage activity modulate DNA egress from the phage capsid. DNA release occurred more slowly when the phage possessed mutant tailspikes with less hydrolytic activity and was not induced if lipopolysaccharides contained tailspike shortened O antigen polymer. Furthermore, the onset of DNA release was delayed by tailspikes with reduced binding affinity. The results suggest a model for P22 infection induced by carbohydrate recognition: tailspikes position the phage on Salmonella enterica and their hydrolytic activity forces a central structural protein of the phage assembly, the plug protein, onto the host´s membrane surface. Upon membrane contact, a conformational change has to occur in the assembly to eject DNA and pilot proteins from the phage to establish infection. Earlier studies had investigated DNA ejection in vitro solely for viruses with long non contractile tails (siphovirus) recognizing protein receptors. Podovirus P22 in this work was therefore the first example for a short tailed phage with an LPS recognition organelle that can trigger DNA ejection in vitro. However, O antigen binding and cleaving tailspikes are widely distributed in the phage biosphere, for example in siphovirus 9NA. Crystal structure analysis of 9NA tailspike revealed a complete similar fold to P22 tailspike although they only share 36 % sequence identity. Moreover, 9NA tailspike possesses similar enzyme activity towards S. Typhimurium O antigen within conserved amino acids. These are responsible for a DNA ejection process from siphovirus 9NA triggered by lipopolysaccharide aggregates. 9NA expelled its DNA 30 times faster than podovirus P22 although the associated conformational change is controlled with a similar high activation barrier. The difference in DNA ejection velocity mirrors different tail morphologies and their efficiency to translate a carbohydrate recognition signal into action. / Kohlenhydraterkennung ist ein fundamentales Prinzip vieler biologischer Prozesse wie z.B. Befruchtung, Embryogenese und virale Infektionen. Wie aber Kohlenhydratspezifität und –affinität in ein molekulares Ereignis übersetzt werden, ist nicht genau verstanden. Ein Beispiel für ein solches Ereignis ist die Infektion des Bakteriophage P22, der drei verschiedene Salmonella enterica (S.) Wirte besitzt. Er erkennt und depolymerisiert die repetitiven Einheiten des O Antigens im Lipopolysaccharid, das sich in der äußeren Membran seines Wirtes befindet. Dieser Schritt wird durch die Tailspikes vermittelt, β helicale Bestandteile des kurzen, nicht kontraktilen Schwanzapparates von P22 (Podovirus). Das O Antigen aller drei Salmonella enterica Wirte besteht aus sich wiederholenden Tetrasacchariden. Sie enthalten die gleiche Hauptkette aber eine spezifische 3,6 Didesoxyhexose Seitenkette, die für die P22 Tailspikeerkennung essentiell ist: Tyvelose in S. Enteritidis, Abequose in S. Typhimurium und Paratose in S. Paratyphi. Im ersten Teil der Arbeit wurde die Komplexbildung von P22 Tailspike mit O Antigen Octasaccharidfragmenten der drei verschiedenen Wirte untersucht. S. Paratyphi Octasaccharide binden mit einer geringeren Affinität (ΔΔG≈7 kJ/mol) an den Tailspike als die beiden anderen Wirte. Die Kristallstrukturanalyse des S. Paratyphi Octasaccharides komplexiert mit P22 Tailspike offenbarten unterschiedliche Interkationen als vorher mit S. Enteritidis und S. Typhimurium Oktasaccharidkomplexen mit Tailspike beobachtet wurden. Diese unterschiedlichen Interaktionen beruhen auf einer strukturellen Änderung in den Φ/Ψ Winkeln der glykosidischen Bindung. Die Beiträge von verschiedenen Proteinoberflächenkontakten zur Affnität wurden untersucht und zeigten, dass konservierte Wasser in der Struktur die spezifische Erkennung aller drei Salmonella Wirte vermittelt. Obwohl die verschiedenen O Antigen Strukturen unterschiedliches Bindungsverhalten auf der Tailspikeoberfläche zeigen, werden alle vom Phagen P22 erkannt und infiziert. Daher wurde in einer zweiten Studie die multivalente Bindung zwischen P22 Tailspike und O Antigen charakterisiert. Die Dissoziationskonstanten des Polymers waren drei Mal langsamer als für das Oktasaccharid allein, was auf eine hohe Affinität des O Antigens schließen lässt. Zusätzlich wurde gezeigt, dass die Aggregate des Lipopolysaccharids in der Lage sind, die Infektiösität vom P22 Phagen zu reduzieren. Ausgehend davon wurde in einer dritten Studie die Bedeutung der Kohlenhydrat Erkennung auf den Infektionsprozess untersucht. Große S. Typhimurium Lipopolysaccharide Aggregate bewirkten die DNA Freisetzung vom P22 Kapsid. Dies deutet darauf, dass der P22 Phage keinen weiteren Rezeptor für die Infektion auf der Oberflächen seines Wirtes verwendet. Zusätzlich moduliert die P22 Tailspike Aktivität den Ausstoss der DNA vom P22 Phagen: Er ist langsamer, wenn der Phage Tailspikes besitzt, die weniger hydrolytisch aktiv sind und wurde nicht induziert, wenn Lipopolysaccharid eingesetzt wurde, dass zuvor mit Tailspike hydrolysiert wurde. Darüber hinaus wurde der Start der DNA Ejektion verzögert, wenn Tailspikes mit verminderter Affinität am Phagen vorhanden waren. Die Ergebnisse führten zu einem Modell für die Infektion von P22: Tailspikes positionieren den Phagen auf Salmonella enterica und ihre Aktivität drückt ein zentrales Strukturprotein des Phagen, das Stöpselprotein, auf die Membranoberfläche. Aufgrund des Membrankontaktes findet eine Konformationsänderung statt die zur Ejektion der Pilotproteine und zur Infektion führt. Vorhergehende Studien haben bisher nur die DNA Ejektion in vitro für Viren mit langen, nicht kontraktilen Schwänzen (Siphoviren) mit Proteinrezeptoren untersucht. In dieser Arbeit wurde das erste Mal die DNA Ejektion für einen Podovirus mit LPS Erkennung in vitro gezeigt. Die O Antigen Erkennung und Spaltung durch Tailspikeproteine gibt es häufig in der Phagenbiosphere, z.B. am Siphovirus 9NA. Die Kristallstrukturanalyse von 9NA Tailspike zeigt eine komplett gleiche Struktur, obwohl beide Proteine nur zu 36% Sequenzidentität besitzen. Zusätzlich hat 9NA Tailspike ähnliche enzymatische Eigenschaften. Diese ist für den DNA Ejektionsprozess im Siphovirus 9NA verantwortlich, der auch durch LPS Agreggate induziert wird. 9NA stößt dabei seine DNA 30 Mal schneller aus als Podovirus P22 obwohl die damit verbundene Konformationsänderung mit einer ähnlich hohen Aktivierungsbarriere kontrolliert wird. Daher spiegeln die Unterschiede in der DNA Ejektionsgeschwindigkeit der verschiedenen Tailmorphologien die Effezienz wieder, mit der die spezifische Kohlenhydraterkennung in ein Signal umgewandelt wird.
2

Konservierte Struktur bei genetischer Mosaizität : die Tailspike Proteine dreier Phagen der Familie Podviridae / Tailspike proteins of three Podoviridae : genetic mosaics with conserved hreedimensional structure

Barbirz, Stefanie January 2005 (has links)
Die Tailspike Proteine (TSP) der Bakteriophagen P22, Sf6 und HK620 dienen der Erkennung von Kohlenhydratstrukturen auf ihren gram-negativen Wirtsbakterien und zeigen, von den ersten 110 Aminosäuren des N-Terminus abgesehen, keine Sequenzübereinstimmung. Mit Röntgenkristallstrukturanalyse konnte gezeigt werden, dass HK620TSP und Sf6TSP ebenfalls zu einer parallelen, rechtsgängigen beta-Helix falten, wie dies schon für P22TSP bekannt war. Die Kohlenhydratbindestelle ist bei Sf6TSP im Vergleich zu P22TSP zwischen die Untereinheiten verschoben. / The bacteriophages P22, Sf6 and HK620 need their tailspike proteins (TSP) for recognition of surface carbohydrates on their gram-negative host bacteria. Sequence identity is completely lacking in their C-terminal 500 to 600 amino acids. The three TSP have the same fold, an oligomeric parallel beta-helix, as shown by crystal structure analyses of HK620TSP and Sf6TSP. Compared with P22TSP, the carbohydrate binding site of Sf6TSP is located at the interface between two monomers and not on a single monomer.
3

Die Erkennung komplexer Kohlenhydrate durch das Tailspike Protein aus dem Bakteriophagen HK620 / Recognition of complex carbohydrates by the tailspike protein from bacteriophage HK620

Bröker, Nina Kristin January 2012 (has links)
Kohlenhydrate stellen aufgrund der strukturellen Vielfalt und ihrer oft exponierten Lage auf Zelloberflächen wichtige Erkennungsstrukturen dar. Die Wechselwirkungen von Proteinen mit diesen Kohlenhydraten vermitteln einen spezifischen Informationsaustausch. Protein-Kohlenhydrat-Interaktionen und ihre Triebkräfte sind bislang nur teilweise verstanden, da nur wenig strukturelle Daten von Proteinen im Komplex mit vorwiegend kleinen Kohlenhydraten erhältlich sind. Mit der vorliegenden Promotionsarbeit soll ein Beitrag zum Verständnis von Protein-Kohlenhydrat-Wechselwirkungen durch Analysen struktureller Thermodynamik geleistet werden, um zukünftig Vorhersagen mit zuverlässigen Algorithmen zu erlauben. Als Modellsystem zur Erkennung komplexer Kohlenhydrate diente dabei das Tailspike Protein (TSP) aus dem Bakteriophagen HK620. Dieser Phage erkennt spezifisch seinen E. coli-Wirt anhand der Oberflächenzucker, der sogenannten O-Antigene. Dabei binden die TSP des Phagen das O-Antigen des Lipopolysaccharids (LPS) und weisen zudem eine hydrolytische Aktivität gegenüber dem Polysaccharid (PS) auf. Anhand von isolierten Oligosacchariden des Antigens (Typ O18A1) wurde die Bindung an HK620TSP und verschiedener Varianten davon systematisch analysiert. Die Bindung der komplexen Kohlenhydrate durch HK620TSP zeichnet sich durch große Interaktionsflächen aus. Durch einzelne Aminosäureaustausche im aktiven Zentrum wurden Varianten generiert, die eine tausendfach erhöhte Affinität (KD ~ 100 nM) im Vergleich zum Wildtyp-Protein (KD ~ 130 μM) aufweisen. Dabei zeichnet sich das System dadurch aus, dass die Bindung bei Raumtemperatur nicht nur enthalpisch, sondern auch entropisch getrieben wird. Ursache für den günstigen Entropiebeitrag ist die große Anzahl an Wassermolekülen, die bei der Bindung des Hexasaccharids verdrängt werden. Röntgenstrukturanalysen zeigten für alle TSP-Komplexe außer für Variante D339N unabhängig von der Hexasaccharid-Affinität analoge Protein- und Kohlenhydrat-Konformationen. Dabei kann die Bindestelle in zwei Regionen unterteilt werden: Zum einen befindet sich am reduzierenden Ende eine hydrophobe Tasche mit geringen Beiträgen zur Affinitätsgenerierung. Der Zugang zu dieser Tasche kann ohne große Affinitätseinbuße durch einen einzelnen Aminosäureaustausch (D339N) blockiert werden. In der zweiten Region kann durch den Austausch eines Glutamats durch ein Glutamin (E372Q) eine Bindestelle für ein zusätzliches Wassermolekül generiert werden. Die Rotation einiger Aminosäuren bei Kohlenhydratbindung führt zur Desolvatisierung und zur Ausbildung von zusätzlichen Wasserstoffbrücken, wodurch ein starker Affinitätsgewinn erzielt wird. HK620TSP ist nicht nur spezifisch für das O18A1-Antigen, sondern erkennt zudem das um eine Glucose verkürzte Oligosaccharid des Typs O18A und hydrolysiert polymere Strukturen davon. Studien zur Bindung von O18A-Pentasaccharid zeigten, dass sich die Triebkräfte der Bindung im Vergleich zu dem zuvor beschriebenen O18A1-Hexasaccharid verschoben haben. Durch Fehlen der Seitenkettenglucose ist die Bindung im Vergleich zu dem O18A1-Hexasaccharid weniger stark entropisch getrieben (Δ(-TΔS) ~ 10 kJ/mol), während der Enthalpiebeitrag zu der Bindung günstiger ist (ΔΔH ~ -10 kJ/mol). Insgesamt gleichen sich diese Effekte aus, wodurch sehr ähnliche Affinitäten der TSP-Varianten zu O18A1-Hexasaccharid und O18A-Pentasaccharid gemessen wurden. Durch die Bindung der Glucose werden aus einer hydrophoben Tasche vier Wassermoleküle verdrängt, was entropisch stark begünstigt ist. Unter enthalpischen Aspekten ist dies ebenso wie einige Kontakte zwischen der Glucose und einigen Resten in der Tasche eher ungünstig. Die Bindung der Glucose in die hydrophobe Tasche an HK620TSP trägt somit nicht zur Affinitätsgenerierung bei und es bleibt zu vermuten, dass sich das O18A1-Antigen-bindende HK620TSP aus einem O18A-Antigen-bindenden TSP evolutionär herleitet. In dem dritten Teilprojekt der Dissertation wurde der Infektionsmechanismus des Phagen HK620 untersucht. Es konnte gezeigt werden, dass analog zu dem verwandten Phagen P22 die Ejektion der DNA aus HK620 allein durch das Lipopolysaccharid (LPS) des Wirts in vitro induziert werden kann. Die Morphologie und Kettenlänge des LPS sowie die Aktivität von HK620TSP gegenüber dem LPS erwiesen sich dabei als essentiell. So konnte die DNA-Ejektion in vitro auch durch LPS aus Bakterien der Serogruppe O18A induziert werden, welches ebenfalls von dem TSP des Phagen gebunden und hydrolysiert wird. Diese Ergebnisse betonen die Rolle von TSP für die Erkennung der LPS-Rezeptoren als wichtigen Schritt für die Infektion durch die Podoviren HK620 und P22. / Carbohydrates are important for recognition events because of their diverse structure and their exposition on cell surfaces. Interactions between proteins and carbohydrates mediate a specific exchange of information crucial for manifold biological functions. The energetics of protein-carbohydrate-interactions are not very well understood so far due to the lack of structural data of proteins in complex with extensive oligosaccharides consisting of more than two building blocks. This dissertation improves the understanding of how proteins recognize complex carbohydrates by analysis of structural thermodynamics, which might lead to reliable algorithms for predictions of protein-carbohydrate-interactions. As model system for this work the tailspike protein (TSP) from coliphage HK620 was used. This phage recognizes specifically the surface O-antigen of its E. coli host by its TSP. HK620TSP does not only bind the O-antigen of host lipopolysaccharide (LPS), but also cleaves the polysaccharide (PS) by its endo-N-acetylglusaminidase activity. HK620TSP binds hexasaccharide fragments of this PS with low affinity (KD ~ 130 μM). However, single amino acid exchanges generated a set of high-affinity mutants with submicromolar dissociation constants (KD ~ 100 nM). Strikingly, at room temperature association is driven by enthalpic and entropic contributions emphasizing major solvent rearrangements upon complex formation. Regardless of their affinity towards hexasaccharide the TSP complexes showed only minor conformational differences in crystal structure analysis accept of mutant D339N. The extended sugar binding site can be subdivided into two regions: Firstly, there is a hydrophobic pocket at the reducing end with minor affinity contributions. Surprisingly, access to this site is blocked by a single exchange of aspartate to asparagine (D339N) without major loss in hexasaccharide affinity. Secondly, there is a region where specific exchange of glutamate for glutamine (E372Q) creates a site for an additional water molecule. Upon sugar binding side chain rearrangements lead to displacement of this water molecule and additional hydrogen bonding. Thereby this region of the binding site is defined as the high affinity scaffold. HK620TSP is not only specific for the O18A1-antigen, but also the lacking of the branching glucose in the O18A1-antigen can be tolerated so that the accordant O18A PS can be bound and cleaved by HK620TSP as well. Surprisingly, in binding studies with the smallest O-antigen units of these PS the O18A pentasaccharide was bound by TSP variants with nearly the same affinity or even a slightly increased one compared to the O18A1 hexasaccharide. However, there is a change in thermodynamic contributions to binding: the lack of the glucose moiety leads to a less entropically favored binding compared to binding of O18A1-hexasaccharide (Δ (-TΔS) ~ 10 kJ/mol). In contrast the enthalpic contribution to the binding is more favorable (ΔΔH ~ -10 kJ/mol) for the binding of O18A pentasaccharide. The side-chain glucose contributes to entropy by the release of four water molecules out of a hydrophobic pocket. The binding of this branching glucose is paid by an enthalpic penalty because of the breakup of hydrogen bonding of displaced water molecules and destabilizing contacts between sugar and protein in this hydrophobic pocket. Therefore the binding of the glucose in this pocket does not account for generating affinity and an evolutionary relation of HK620TSP to an O18A-antigen binding protein is presumed. Finally, the infection mechanism of phage HK620 was studied as well. In analogy to the related phage P22 the DNA-ejection could be triggered by incubation of HK620 with the host LPS in vitro. The morphology and chain length of the LPS as well as the activity of HK620TSP towards the LPS are crucial for this in vitro DNA-ejection. Thus, the DNA-ejection could also be induced by LPS from bacteria of serogroup O18A which can be bound and hydrolyzed by HK620TSP. These results stress the role of TSP for the recognition of host LPS-receptors as a crucial step of infection by podoviruses P22 and HK620.
4

Use of surfaces functionalized with phage tailspike proteins to capture and detect bacteria in biosensors and bioassays

Dutt, Sarang 11 1900 (has links)
The food safety and human diagnostics markets are in need of faster working, reliable, sensitive, specific, low cost bioassays and biosensors for bacterial detection. This thesis reports the use of P22 bacteriophage tailspike proteins (TSP) immobilized on silanized silicon surfaces, roughened at a nano-scale, for specific capture and detection of Salmonella. Towards developing TSP biosensors, TSP immobilization characteristics were studied, and methods to improve bacterial capture were explored. Atomic force microscopy was used to count TSP immobilized on gold thin-films. Surface density counts are dependent on the immobilization scheme used. TSP immobilized on flat silicon (Si), silanized with 3-aminopropyltriethoxysilane and activated with glutaraldehyde, showed half the bacterial capture of gold thin-films. To improve bacterial capture, roughened mountain-shaped ridge-covered silicon (MSRCS) surfaces were coated with TSP and tested. Measurements of their bacterial surface density show that such MSRCS surfaces can produce bacterial capture close to or better than TSP-coated gold thin-films. / Biomedical Engineering
5

Use of surfaces functionalized with phage tailspike proteins to capture and detect bacteria in biosensors and bioassays

Dutt, Sarang Unknown Date
No description available.
6

Bedeutung eines hydrophoben Seitenkettenstapels für Stabilität, Faltung und Struktur des P22 Tailspikeproteins / Importance of a hydrophobic side chain stack for stability, folding and structure of the P22 tailspike protein

Becker, Marion January 2009 (has links)
Das homotrimere Tailspikeadhäsin des Bakteriophagen P22 ist ein etabliertes Modellsystem, dessen Faltung, Assemblierung und Stabilität in vivo und in vitro umfassend charakterisiert ist. Das zentrale Strukturmotiv des Proteins ist eine parallele beta-Helix mit 13 Windungen, die von einer N‑terminalen Kapsidbindedomäne und einer C‑terminalen Trimerisierungsdomäne flankiert wird. Jede Windung beinhaltet drei kurze beta-Stränge, die durch turns und loops unterschiedlicher Länge verbunden sind. Durch den sich strukturell wiederholenden, spulenförmigen Aufbau formen beta-Stränge benachbarter Windungen elongierte beta-Faltblätter. Das Lumen der beta-Helix beinhaltet größtenteils hydrophobe Seitenketten, welche linear und sehr regelmäßig entlang der Längsachse gestapelt sind. Eine hoch repetitive Struktur, ausgedehnte beta-Faltblätter und die regelmäßige Anordnung von ähnlichen oder identischen Seitenketten entlang der beta-Faltblattachse sind ebenfalls typische Kennzeichen von Amyloidfibrillen, die bei Proteinfaltungskrankheiten wie Alzheimer, der Creutzfeld-Jakob-Krankheit, Chorea Huntington und Typ-II-Diabetes gebildet werden. Es wird vermutet, dass die hohe Stabilität des Tailspikeproteins und auch die der Amyloidfibrille durch Seitenkettenstapelung, einem geordneten Netzwerk von Wasserstoffbrückenbindungen und den rigiden, oligomeren Verbund bedingt ist. Um den Einfluss der Seitenkettenstapelung auf die Stabilität, Faltung und Struktur des P22 Tailspikeproteins zu untersuchen, wurden sieben Valine in einem im Lumen der beta-Helix begrabenen Seitenkettenstapel gegen das kleinere und weniger hydrophobe Alanin und das voluminösere Leucin substituiert. Der Einfluss der Mutationen wurde anhand zweier Tailspikevarianten, dem trimeren, N‑terminal verkürzten TSPdeltaN‑Konstrukt und der monomeren, isolierten beta-Helix Domäne analysiert. Generell wurde in den Experimenten deutlich, dass Mutationen zu Alanin stärkere Effekte auslösen als Mutationen zu Leucin. Die dichte und hydrophobe Packung im Kern der beta-Helix bildet somit die Basis für Stabilität und Faltung des Proteins. Anhand hoch aufgelöster Kristallstrukturen jeweils zweier Alanin‑ und Leucin‑Mutanten konnte verdeutlicht werden, dass das Strukturmotiv der parallelen beta-Helix stark formbar ist und mutationsbedingte Änderungen des Seitenkettenvolumens durch kleine und lokale Verschiebung der Haupt‑ und Seitenketten ausgeglichen werden, sodass mögliche Kavitäten gefüllt und sterische Spannung abgebaut werden können. Viele Mutanten zeigten in vivo und in vitro einen temperatursensitiven Faltungsphänotyp (temperature sensitive for folding, tsf), d.h. bei Temperaturerhöhung waren die Ausbeuten des N‑terminal verkürzten Trimers im Vergleich zum Wildtyp deutlich verringert. Weiterführende Experimente zeigten, dass der tsf‑Phänotyp durch die Beeinflussung unterschiedlicher Stadien des Reifungsprozesses oder auch durch die Verminderung der kinetischen Stabilität des nativen Trimers ausgelöst wurde. Durch Untersuchungen am vollständigen und am N‑terminal verkürzten Wildtypprotein wurde gezeigt, dass die Entfaltungsreaktion des Tailspiketrimers komplex ist. Die Verläufe der Kinetiken folgen zwar einem apparenten Zweizustandsverhalten, jedoch sind bei Darstellung der Entfaltungsäste im Chevronplot die Abhängigkeiten der Geschwindigkeitskonstanten vom Denaturierungsmittel nicht linear, sondern in unterschiedliche Richtungen gewölbt. Dieses Verhalten könnte durch ein hoch energetisches Entfaltungsintermediat, einen breiten Übergangsbereich oder parallele Entfaltungswege hervorgerufen sein. Mit Hilfe der monomeren, isolierten beta-Helix Domäne, bei der die N‑terminale Capsidbindedomäne und die C‑terminale Trimerisierungsdomäne deletiert sind und welche als unabhängige Faltungseinheit fungiert, wurde gezeigt, dass alle Mutanten im Harnstoff‑induzierten Gleichgewicht analog zum Wildtypprotein einem Zweizustandsverhalten mit vergleichbaren Kooperativitäten folgen. Die konformationellen Stabilitäten von in der beta-Helix zentral gelegenen Alanin‑ und Leucin‑Mutanten sind stark vermindert, während Mutationen in äußeren Bereichen der Domäne keinen Einfluss auf die Stabilität der beta-Helix haben. Bei Verlängerung der Inkubationszeiten der Gleichgewichtsexperimente konnte die langsame Bildung von Aggregaten im Übergangsbereich der destabilisierten Mutanten detektiert werden. Die in der Arbeit erlangten Erkenntnisse lassen vermuten, dass die isolierte beta-Helix einem für die Reifung des Tailspikeproteins entscheidenden thermolabilen Faltungsintermediat auf Monomerebene sehr ähnlich ist. Im Intermediat ist ein zentraler Kern, der die Windungen 4 bis 7 und die „Rückenflosse“ beinhaltet, stabilitätsbestimmend. Dieser Kern könnte als Faltungsnukleus dienen, an den sich sequenziell weitere Helixwindungen anlagern und im Zuge der „Monomerreifung“ kompaktieren. / The homotrimeric tailspike adhesin of bacteriophage P22 is a widely used model system for studying different aspects of multi-domain protein folding, assembly and stability, both in vivo and in vitro. The central domain of the tailspike protein is a 13-turn right-handed parallel beta-helix, flanked by an N-terminal capsid-binding domain and a C-terminal trimerization domain. In the beta-helix motif the polypeptide backbone winds up to form a right-handed helix, with each coil consisting of three short beta-strands connected by turns and loops of varying lengths. Due to this repetitive and solenoidal structure, beta-strands of adjacent coils participate in building up three elongated beta-sheets. The internal lumen of the beta-helix is tightly packed and contains mostly hydrophobic side-chains, which are stacked along the helical axis in a linear and very regular manner. A highly repetitive structure, elongated beta-sheets and stacking of similar or identical side chains along the beta-sheet axis are also typical characteristics of amyloid fibrils, which are associated with protein folding diseases such as Alzheimer’s disease, Creutzfeldt-Jacob disease, Huntington’s disease and type II diabetes. It is assumed that the high stability of both, the tailspike protein and amyloid fibrils, is determined by side chain stacking, a well‑ordered network of H-bonds and the rigid, oligomeric state. To systematically investigate the influence of side chain stacking for stability, folding and structure of the P22 tailspike protein, a hydrophobic stack located in the lumen of the beta-helix domain was subjected to site-directed mutagenesis. Each of seven valine residues, distributed over the whole length of the beta-helix domain, was substituted by the smaller and less hydrophobic alanine and the bulkier leucine. The influence of these substitutions was investigated with the help of two tailspike protein constructs, namely the N-terminally shortened TSPdeltaN construct and the isolated, monomeric BHX construct. In general, almost all experiments showed that alanine mutations cause a stronger effect than leucine mutations, which demonstrates that the tight and hydrophobic packing in the lumen of the beta-helix domain is the basis for stability and folding of the tailspike protein. High-resolution crystal structures of two alanine and two leucine mutants revealed that the parallel beta-helix motif shows considerable plasticity. Small and local adjustments of side chains and the polypeptide backbone compensate for changes induced by the mutations, herewith potential cavities are filled and steric strain is released. Compared to the wild type, many mutations lead to a temperature sensitive for folding (tsf) phenotype in vivo and in vitro, i.e. mutations reduce folding yields of TSPdeltaN at high temperatures, but had little effect at low temperatures. Our experiments have elucidated that the tsf phenotype was caused either by an impact on different stages of the maturation process or by a reduction of the kinetic stability of the native trimer. Using TSPdeltaN and the complete wild type protein, it was shown that the tailspike trimer unfolds in a complex manner. Although unfolding kinetics exhibit a two-state behaviour, analysis of the apparent rate constants of unfolding in a Chevron plot revealed their non-linear denaturant-dependence. Typically, the natural logarithm of the apparent rate constants depend linearly on the denaturant concentration. However, in case of TSPdeltaN and the complete wild type protein, unfolding branches of the Chevron plot are curved. Such a behaviour could arise from a high energy intermediate on the unfolding pathway, a broad activation barrier or parallel unfolding pathways. The monomeric BHX construct lacks both the N-terminal and C-terminal domain. It folds into a conformation very similar to that of the -helix domain in the tailspike trimer and acts as an independent folding unit. Unfolding and refolding equilibrium transitions of mutant and wild type BHX constructs are reversible and follow a two-state behaviour with comparable cooperativities. However, conformational stabilities of alanine and leucine mutations located in the central part of the beta-helix domain are highly reduced, whereas mutations at the ends of the domain show a wild type-like stability. Furthermore, these destabilizing mutations tend to form aggregates around the transition midpoint when equilibrium experiments were incubated for longer time periods. Taken together, the results suggest that the structure of the isolated beta-helix seems to be similar to an essential, monomeric intermediate during tailspike folding. In this intermediate, a central core including coils 4 to 7 and the dorsal fin determines the stability of the whole folding unit. This core may act as a nucleus on which beta-helix coils can associate in a sequential manner and compact during maturation of the monomer.

Page generated in 0.0422 seconds