• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanismen der Laserablation zur Synthese nanoskopischer Kolloide

Schaumberg, Christian Alexander 28 April 2016 (has links)
Die Synthese kolloidaler Nanopartikel ist daher eines der wichtigsten Forschungsthemen der letzten Jahre. Die gepulste Laserablation in Flüssigkeiten stellt eine Alternative zu den nasschemischen Synthesewegen dar. Merkmale der gepulsten Laserablation in Flüssigkeiten ist der geringe experimentelle Aufwand, die Vielseitigkeit und die Möglichkeit stabilisatorfreie kolloidale Nanopartikel herzustellen. Eine Weiterentwicklung ist die Verwendung von Pulversuspensionen als Ausgangsmaterial. Dies führt zu höheren Produktivitäten und neuen Materialien. Die zugrundeliegenden Prozesse sind allerdings komplex. Um diese Mechanismen aufzuklären, wurde ein chemischer Ansatz gewählt. Als Ausgangsmaterial wurden daher verschiedene Kupferverbindungen (Cu2C2, Cu5Si, Cu3N, Cu(N3)2, Cu3P, Cu2O, CuO, Cu2S, CuS und CuI) verwendet. Die hergestellten Nanopartikel wurden mit Hilfe der analytischen Transmissionselektronenmikroskopie charakterisiert. Dadurch konnten nachgewiesen werden, dass zwei Mechanismen an der Nanopartikelbildung beteiligt sind. Die Laserbestrahlung von Ausgangsmaterialien wie CuO und Cu3N führt zur Bildung von metallischen Kupfernanopartikeln. In dem dabei erzeugten Plasma nukleieren die Kupferatome zunächst zu kleinen primären Nanopartikeln. Diese Partikel koaleszieren anschließend und bilden größere sekundäre Partikel. Im Gegensatz zu dieser reduktiven Ablation, resultiert die Laserbestrahlung von CuI in der Fragmentierung des Materials. In diesem Fall wird kein Plasma erzeugt, sondern der induzierte thermische Stress führt zur Fragmentierung des Kristalls unter Beibehaltung der chemischen Zusammensetzung. Die Frage, welcher der beiden Mechanismen für ein bestimmtes Ausgangsmaterial dominiert, ist entscheidend für potentielle Anwendungen der Methode, da hiervon die chemische Zusammensetzung der erhaltenen Nanopartikel abhängt. Dies wird am Beispiel der Synthese von Bi2Te3 Nanopartikeln diskutiert, die in thermoelektrischen Elementen zur Anwendung kommen können. / The synthesis of colloidal nanoparticles has become a major topic in recent years. The pulsed laser ablation in liquids poses an alternative to the common wet-chemical approaches. Key features of the pulsed laser ablation in liquids are its simple setup, its versatility, and the possibility to generate surfactant-free colloidal nanoparticles. A further development of this technique is the use of suspended powders instead of bulk targets. This leads to higher productivities and even new materials. Although the generation of colloids by irradiating a suspension is straight forward, the underlying mechanisms of the size reduction from micrometer to nanometer sized particles appear to be quite complex. In order to reveal the mechanism a chemical approach was chosen. Hence, various copper compounds (Cu2C2, Cu5Si, Cu3N, Cu(N3)2, Cu3P, Cu2O, CuO, Cu2S, CuS and CuI) were used as a model system in order to investigate the impact of the leaving group on the ablation process. The generated nanoparticles were characterized with analytical transmission electron microscopy. These investigations clearly show that there are two distinct mechanisms involved in nanoparticle formation. The laser irradiation of precursors like CuO and Cu3N results in the formation of metallic copper nanoparticles. In the generated plasma copper atoms nucleate and form small primary particles. These particles later coalesce to larger secondary particles. In contrast to this reductive ablation, the irradiation of CuI follows a fragmentation mechanism. Here, the absorbed power of the laser beam does not produce a plasma but introduces thermal stress leading to fragmentation of the crystal while the chemical composition is preserved. The question which mechanism is predominant is of utmost importance as the chemical composition of the nanoparticles depends on the formation process. This is discussed on the example of the synthesis of Bi2Te3 nanoparticles, which can be used in thermoelectric applications.
2

Electron Energy-Loss Spectroscopy on Underdoped Cuprates and Transition-Metal Dichalcogenides

Schuster, Roman 09 March 2010 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit Elektronenenergieverlustspektroskopie an unterdotierten Kupratsupraleitern und Übergangsmetalldichalcogeniden. Nach einem kurzen Abriss über die der experimentellen Methode zugrundeliegenden theoretischen Tatsachen folgen zwei experimentelle Kapitel. Für das prototypische Kupratsystem Ca2-xNaxCuO2Cl2 wird für verschiedene Dotierungskonzentrationen zunächst die Entwicklung der Ladungstransferanregungen untersucht. Man findet eine substanzielle Umverteilung des spektralen Gewichtes, verbunden mit einem starken Einbruch der Dispersion dieser Anregungen. Beides wird im Rahmen der Wechselwirkung mit Spinfreiheitsgraden innerhalb der Kupfer-Sauerstoff-Ebene diskutiert. Anschliessend erfolgt die Diskussion einer ausschließlich für zehnprozentige Dotierung auftretenden Symmetriebrechung der optischen Antwortfunktion, für die verschiedene mögliche Szenarien vorgeschlagen werden. Im Kapitel über die Dichalcogenide liegt der Fokus auf dem Verhalten des Ladungsträgerplasmons, das für alle Substanzen dieser Gruppe mit Ladungsordnung eine negative Dispersion aufweist. Dieses Verhalten läßt sich durch in-situ Interkalation zusätzlicher Ladungstraeger umkehren, so dass man eine dotierungsabhängige Plasmonendispersion erhält. Es werden verschiedene Szenarien für dieses Verhalten diskutiert. / The present thesis describes electron energy-loss spectroscopy on underdoped cuprate superconductors and transition-metal dichalcogenides. After a brief introduction into the experimental method there are two experimental chapters. For the prototype cuprate system Ca2-xNaxCuO2Cl2 the behavior of the charge-transfer excitations is investigated as a function of doping. The observed substantial redistribution of spectral weight and the accompanying breakdown of their dispersion is discussed in terms of a coupling to the spin degrees of freedom within the copper-oxygen plane. For x=0.1 there is a pronounced symmetry breaking in the optical response function which is discussed in terms of different possible scenarios. The chapter on the dichalcogenides focuses on the properties of the charge-carrier plasmon which shows a negative dispersion for all representatives of this family exhibiting a charge-density wave instability. This behavior can be influenced by in-situ intercalation of additional charges, the result being a doping dependent plasmon dispersion. Several approaches to reconcile these findings are considered.
3

Electron Energy-Loss Spectroscopy on Underdoped Cuprates and Transition-Metal Dichalcogenides

Schuster, Roman 24 February 2010 (has links)
Die vorliegende Arbeit befasst sich mit Elektronenenergieverlustspektroskopie an unterdotierten Kupratsupraleitern und Übergangsmetalldichalcogeniden. Nach einem kurzen Abriss über die der experimentellen Methode zugrundeliegenden theoretischen Tatsachen folgen zwei experimentelle Kapitel. Für das prototypische Kupratsystem Ca2-xNaxCuO2Cl2 wird für verschiedene Dotierungskonzentrationen zunächst die Entwicklung der Ladungstransferanregungen untersucht. Man findet eine substanzielle Umverteilung des spektralen Gewichtes, verbunden mit einem starken Einbruch der Dispersion dieser Anregungen. Beides wird im Rahmen der Wechselwirkung mit Spinfreiheitsgraden innerhalb der Kupfer-Sauerstoff-Ebene diskutiert. Anschliessend erfolgt die Diskussion einer ausschließlich für zehnprozentige Dotierung auftretenden Symmetriebrechung der optischen Antwortfunktion, für die verschiedene mögliche Szenarien vorgeschlagen werden. Im Kapitel über die Dichalcogenide liegt der Fokus auf dem Verhalten des Ladungsträgerplasmons, das für alle Substanzen dieser Gruppe mit Ladungsordnung eine negative Dispersion aufweist. Dieses Verhalten läßt sich durch in-situ Interkalation zusätzlicher Ladungstraeger umkehren, so dass man eine dotierungsabhängige Plasmonendispersion erhält. Es werden verschiedene Szenarien für dieses Verhalten diskutiert. / The present thesis describes electron energy-loss spectroscopy on underdoped cuprate superconductors and transition-metal dichalcogenides. After a brief introduction into the experimental method there are two experimental chapters. For the prototype cuprate system Ca2-xNaxCuO2Cl2 the behavior of the charge-transfer excitations is investigated as a function of doping. The observed substantial redistribution of spectral weight and the accompanying breakdown of their dispersion is discussed in terms of a coupling to the spin degrees of freedom within the copper-oxygen plane. For x=0.1 there is a pronounced symmetry breaking in the optical response function which is discussed in terms of different possible scenarios. The chapter on the dichalcogenides focuses on the properties of the charge-carrier plasmon which shows a negative dispersion for all representatives of this family exhibiting a charge-density wave instability. This behavior can be influenced by in-situ intercalation of additional charges, the result being a doping dependent plasmon dispersion. Several approaches to reconcile these findings are considered.
4

Plasmonic waveguides self-assembled on DNA origami templates: from synthesis to near-field characterizations

Gür, Fatih Nadi 12 June 2018 (has links) (PDF)
Manipulating light by controlling surface plasmons on metals is being discussed as a means for bridging the size gap between micrometer-sized photonic circuits and nanometer-sized integrated electronics. Plasmonic waveguides based on metal nanoparticles are of particular interest for circumventing the diffraction limit, thereby enabling high-speed communication over short-range distances in miniaturized micro-components. However, scalable, inexpensive fine-tuning of particle assemblies remains a challenge and near-field probing is required to reveal plasmonic interactions. In this thesis, self-assembled waveguides should be produced on DNA scaffolds. DNA origami is an extremely versatile and robust self-assembly method which allows scalable production of nanostructures with a fine control of assemblies at the nanoscale. To form the plasmonic waveguides, six-helix bundle DNA origami nanotubes are used as templates for attachment of highly monodisperse and monocrystalline gold nanoparticles with an inter-particle distance of 1-2 nm. In the first part of this thesis, the effects of parameters which are involved in assembly reactions are systematically investigated. The assembly yield and binding occupancy of the gold nanoparticles are determined by an automated, high-throughput image analysis of electron micrographs of the formed complexes. As a result, unprecedented binding site occupancy and assembly yield are achieved with the optimized synthesis protocol. In addition, waveguides with different sizes of gold nanoparticles and different inter-particle distances, quantum dots attachments to the waveguides and multimerization of the waveguides are successfully realized. In the second part of this thesis, direct observation of energy transport through a self-assembled waveguide towards a fluorescent nanodiamond is demonstrated. High-resolution, near-field mapping of the waveguides are studied by electron energy loss spectroscopy and cathodoluminescence imaging spectroscopy. The experimental and simulation results reveal that energy propagation through the waveguides is enabled by coupled surface plasmon modes. These surface plasmon modes are probed at high spatial and spectral resolutions. The scalable self-assembly approach presented here will enable the construction of complex, sub diffraction plasmonic devices for applications in high-speed optical data transmission, quantum information technology, and sensing. / Die Manipulation des Lichts durch die Kontrolle von Oberflächenplasmonen auf metallischen Oberflächen und Nanopartikeln gilt als vielversprechende Methode zur Überbrückung der Größen-Lücke zwischen Mikrometer-großen photonischen und nanometer-großen elektronischen Schaltkreisen. Plasmonische Wellenleiter basierend auf metallischen Nanopartikeln sind vom besonderen Interesse, da sie die Umgehung des Beugungslimits und somit eine Hochgeschwindigkeitskommunikation über kurze Distanzen in immer kleiner werdenden Schaltkreisen ermöglichen könnten. Allerdings ist die skalierbare und kostengünstige Anordnung von Partikeln eine große Herausforderung und es werden Nahfelduntersuchungen benötigt um plasmonische Interaktionen detektieren zu können. Das Ziel dieser Arbeit ist die Selbstassemblierung von multi-partikel Wellenleitern auf DNA Gerüsten. Die Verwendung von DNA-Origami bietet eine äußerst vielseitige Plattform zur skalierbaren Herstellung von Nanostrukturen mittels Selbstassemblierung und ermöglicht eine präzise Kontrolle der Anordnungen im Nanobereich. Für den Aufbau der plasmonischen Wellenleiter werden DNA-Origami Nanoröhren, bestehend aus sechs Helices als Templat für die Anbindung von monodispersen und monokristallinen Goldnanopartikeln mit einem interpartikulären Abstand von 1-2 nm verwendet. Im ersten Abschnitt dieser Arbeit werden die beeinflussenden Faktoren dieser Assemblierungsreaktion systematisch untersucht. Die Ausbeute der assemblierten Strukturen und die Besetzung der Bindungsstellen werden durch eine automatisierte und effiziente Bildanalyse von Elektronenmikroskopieaufnahmen ausgewertet. Durch die Entwicklung eines optimierten Syntheseprotokolls werden bisher unerreichte Assemblierungsausbeuten ermöglicht. Zusätzlich erfolgen die experimentelle Realisierung von Strukturen mit verschieden großen Goldnanopartikeln und unterschiedlichen interpartikulären Abständen, sowie die Anbindung von Quantenpunkten an die Wellenleiter und eine Verknüpfung der assemblierten Strukturen. Der zweite Abschnitt dieser Dissertation befasst sich mit der Untersuchung des Energietransports in selbstassemblierten Wellenleitern über einen fluoreszierenden Nanodiamanten. Dazu erfolgen hochaufgelöste Nahfeldmessungen der Wellenleiter mittels Elektronenenergieverlustspektroskopie und Kathodolumineszenz-mikroskopie. Die experimentellen Ergebnisse und zusätzlich durchgeführte Simulationen bestätigen eine durch gekoppelte Oberflächenplasmonenmoden induzierte Weitergabe der Energie innerhalb des Wellenleiters. Diese Oberflächenplasmonenmoden werden bei hoher räumlicher und spektraler Auflösung untersucht. Das hier umgesetzte Konzept der Selbstassemblierung wird den Aufbau komplexer plasmonischer Geräte für Anwendungen im Bereich der optischen Hochgeschwindigkeitsdatenübertragung, der Quanteninformations-technolgie und der Sensorik ermöglichen.
5

Numerics of photonic and plasmonic nanostructures with advanced material models

Kiel, Thomas 18 May 2022 (has links)
In dieser Arbeit untersuchen wir mehrere Anwendungen von photonischen und plasmonischen Nanostrukturen unter Verwendung zweier verschiedener numerischer Methoden: die Fourier-Moden-Methode (FMM) und ein unstetiges Galerkin-Zeitraumverfahren (discontinuous Galerkin time-domain method, DGTD method). Die Methoden werden für vier verschiedene Anwendungen eingesetzt, die alle eine Materialmodellerweiterung in der Implementierung der Methoden erfordern. Diese Anwendungen beinhalten die Untersuchung von dünnen, freistehenden, periodisch perforierten Goldfilmen. Wir charakterisieren die auftretenden Oberflächenplasmonenpolaritonen durch die Berechnung von Transmissions- und Elektronenenergieverlustspektren, die mit experimentellen Messungen verglichen werden. Dazu stellen wir eine Erweiterung der DGTD-Methode zur Verfügung, die sowohl absorbierende, impedanzangepasste Randschichten als auch Anregung mit geglätteter Ladungsverteilung für materialdurchdringende Elektronenstrahlen beinhaltet. Darüber hinaus wird eine Erweiterung auf nicht-dispersive anisotrope Materialien für eine Formoptimierung einer volldielektrischen magneto-optischen Metaoberfläche verwendet. Diese Optimierung ermöglicht eine verstärkte Faraday-Rotation zusammen mit einer hohen Transmission. Zusätzlich untersuchen wir abstimmbare hyperbolische Metamaterialresonatoren im nahen Infrarot mit Hilfe der FMM. Wir berechnen deren Resonanzen und vergleichen sie mit dem Experiment. Zum Schluss wird die Implementierung eines nichtlinearen Vier-Niveau-System-Materialmodells in der DGTD-Methode verwendet, um die Laserschwellen eines Mikroresonators mit Bragg-Spiegeln zu berechnen. Bei Einführung eines Silbergitters mit variablen Spaltgrößen wird eine defektinduzierte Kontrolle der Laserschwellen ermöglicht. Die Berechnung der vollständigen, zeitaufgelösten Felddynamik innerhalb des Resonator gibt dabei Aufschluss über die beteiligten Lasermoden. / In this thesis, we study several applications of photonic and plasmonic nanostructures by employing two different numerical methods: the Fourier modal method (FMM) and discontinuous Galerkin time-domain (DGTD) method. The methods are used for four different applications, all of which require a material model extension for the implementation of the methods. These applications include the investigation of thin, free-standing periodically perforated gold films. We characterize the emerging surface plasmon polaritons by computing both transmittance and electron energy loss spectra, which are compared to experimental measurements. To this end, we provide an extension of the DGTD method, including absorbing stretched coordinate perfectly matched layers as well as excitations with smoothed charge distribution for material-penetrating electron beams. Furthermore, an extension to non-dispersive anisotropic materials is used for shape optimization of an all-dielectric magneto-optic metasurface. This optimization enables an enhanced Faraday rotation along with high transmittance. Additionally, we study tuneable near-infrared hyperbolic metamaterial cavities with the help of the FMM. We compute the cavity resonances and compare them to the experiment. Finally, the implementation of a non-linear four-level system material model in the DGTD method is used to compute lasing thresholds of a distributed Bragg reflector microcavity. Introducing a silver grating with variable gap sizes allows for a defect-induced lasing threshold control. The computation of the full time-resolved field dynamics of the cavity provides information on the involved lasing modes.
6

Plasmonic waveguides self-assembled on DNA origami templates: from synthesis to near-field characterizations

Gür, Fatih Nadi 26 March 2018 (has links)
Manipulating light by controlling surface plasmons on metals is being discussed as a means for bridging the size gap between micrometer-sized photonic circuits and nanometer-sized integrated electronics. Plasmonic waveguides based on metal nanoparticles are of particular interest for circumventing the diffraction limit, thereby enabling high-speed communication over short-range distances in miniaturized micro-components. However, scalable, inexpensive fine-tuning of particle assemblies remains a challenge and near-field probing is required to reveal plasmonic interactions. In this thesis, self-assembled waveguides should be produced on DNA scaffolds. DNA origami is an extremely versatile and robust self-assembly method which allows scalable production of nanostructures with a fine control of assemblies at the nanoscale. To form the plasmonic waveguides, six-helix bundle DNA origami nanotubes are used as templates for attachment of highly monodisperse and monocrystalline gold nanoparticles with an inter-particle distance of 1-2 nm. In the first part of this thesis, the effects of parameters which are involved in assembly reactions are systematically investigated. The assembly yield and binding occupancy of the gold nanoparticles are determined by an automated, high-throughput image analysis of electron micrographs of the formed complexes. As a result, unprecedented binding site occupancy and assembly yield are achieved with the optimized synthesis protocol. In addition, waveguides with different sizes of gold nanoparticles and different inter-particle distances, quantum dots attachments to the waveguides and multimerization of the waveguides are successfully realized. In the second part of this thesis, direct observation of energy transport through a self-assembled waveguide towards a fluorescent nanodiamond is demonstrated. High-resolution, near-field mapping of the waveguides are studied by electron energy loss spectroscopy and cathodoluminescence imaging spectroscopy. The experimental and simulation results reveal that energy propagation through the waveguides is enabled by coupled surface plasmon modes. These surface plasmon modes are probed at high spatial and spectral resolutions. The scalable self-assembly approach presented here will enable the construction of complex, sub diffraction plasmonic devices for applications in high-speed optical data transmission, quantum information technology, and sensing. / Die Manipulation des Lichts durch die Kontrolle von Oberflächenplasmonen auf metallischen Oberflächen und Nanopartikeln gilt als vielversprechende Methode zur Überbrückung der Größen-Lücke zwischen Mikrometer-großen photonischen und nanometer-großen elektronischen Schaltkreisen. Plasmonische Wellenleiter basierend auf metallischen Nanopartikeln sind vom besonderen Interesse, da sie die Umgehung des Beugungslimits und somit eine Hochgeschwindigkeitskommunikation über kurze Distanzen in immer kleiner werdenden Schaltkreisen ermöglichen könnten. Allerdings ist die skalierbare und kostengünstige Anordnung von Partikeln eine große Herausforderung und es werden Nahfelduntersuchungen benötigt um plasmonische Interaktionen detektieren zu können. Das Ziel dieser Arbeit ist die Selbstassemblierung von multi-partikel Wellenleitern auf DNA Gerüsten. Die Verwendung von DNA-Origami bietet eine äußerst vielseitige Plattform zur skalierbaren Herstellung von Nanostrukturen mittels Selbstassemblierung und ermöglicht eine präzise Kontrolle der Anordnungen im Nanobereich. Für den Aufbau der plasmonischen Wellenleiter werden DNA-Origami Nanoröhren, bestehend aus sechs Helices als Templat für die Anbindung von monodispersen und monokristallinen Goldnanopartikeln mit einem interpartikulären Abstand von 1-2 nm verwendet. Im ersten Abschnitt dieser Arbeit werden die beeinflussenden Faktoren dieser Assemblierungsreaktion systematisch untersucht. Die Ausbeute der assemblierten Strukturen und die Besetzung der Bindungsstellen werden durch eine automatisierte und effiziente Bildanalyse von Elektronenmikroskopieaufnahmen ausgewertet. Durch die Entwicklung eines optimierten Syntheseprotokolls werden bisher unerreichte Assemblierungsausbeuten ermöglicht. Zusätzlich erfolgen die experimentelle Realisierung von Strukturen mit verschieden großen Goldnanopartikeln und unterschiedlichen interpartikulären Abständen, sowie die Anbindung von Quantenpunkten an die Wellenleiter und eine Verknüpfung der assemblierten Strukturen. Der zweite Abschnitt dieser Dissertation befasst sich mit der Untersuchung des Energietransports in selbstassemblierten Wellenleitern über einen fluoreszierenden Nanodiamanten. Dazu erfolgen hochaufgelöste Nahfeldmessungen der Wellenleiter mittels Elektronenenergieverlustspektroskopie und Kathodolumineszenz-mikroskopie. Die experimentellen Ergebnisse und zusätzlich durchgeführte Simulationen bestätigen eine durch gekoppelte Oberflächenplasmonenmoden induzierte Weitergabe der Energie innerhalb des Wellenleiters. Diese Oberflächenplasmonenmoden werden bei hoher räumlicher und spektraler Auflösung untersucht. Das hier umgesetzte Konzept der Selbstassemblierung wird den Aufbau komplexer plasmonischer Geräte für Anwendungen im Bereich der optischen Hochgeschwindigkeitsdatenübertragung, der Quanteninformations-technolgie und der Sensorik ermöglichen.

Page generated in 0.0995 seconds