• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 25
  • Tagged with
  • 52
  • 52
  • 52
  • 46
  • 30
  • 27
  • 18
  • 15
  • 13
  • 12
  • 11
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Iron based pnictide and chalcogenide superconductors studied by muon spin spectroscopy

Shermadini, Zurab 17 July 2014 (has links) (PDF)
In the present thesis the superconducting properties of the Iron-based Ba_{1-x}Rb_{x}Fe_{2}As_{2} arsenides, and A_{x}Fe_{2-y}Se_{2} (A = Cs, Rb, K) chalcogenides are investigated by means of Muon Spin Rotation Spectroscopy. The temperature and pressure dependence of the magnetic penetration depth is obtained form muSR experiments and analyzed to probe the superconducting gap-symmetries for each samples. The Ba_{1-x}Rb_{x}Fe_{2}As_{2} system is described within the multi-gap s+s-wave scenario and results are discussed in the light of the suppression of inter-band processes upon hole doping. Due to the lowered upper critical field Bc2 and reduced Tc, a large section of B-T-p phase diagram is studied for the hole-overdoped x=1 case. By applying hydrostatic pressure, the RbFe_{2}As_{2} system exhibits a classical BCS superconducting characteristics. The A_{x}Fe_{2-y}Se_{2} chalcogenide represents a system containing magnetically ordered and superconducting phases simultaneously. In all investigated chalcogenide samples, about 90% of the total volume show the strong antiferromagnetic phase and 10% exhibit a paramagnetic behavior. Magnetization measurements reveal a 100% Meissner effect, while muSR clearly indicates that the paramagnetic phase is a perfect superconductor. Up to now, there is no clear evidence whether the antiferromagnetic phase is also superconducting. The microscopic coexistence and/or phase separation of superconductivity and magnetism is discussed. Moreover, a new hydrostatic double-wall pressure cell is developed and produced, satisfying the demands of muSR experiments. The designs and characteristics of the new pressure cell are reviewed in the present thesis.
2

Investigations on the parent compounds of Fe-chalcogenide superconductors

Koz, Cevriye 28 June 2016 (has links) (PDF)
This work is focused on the parent compounds of the Fe-chalcogenide superconductors. For this purpose poly- and single-crystalline forms of tetragonal β-FexSe, Fe1+yTe, Fe1+yTe1-xSex and Fe(1+y)-xMxTe (M = Ni, Co) have been prepared. Second focal points of this study are the low-temperature structural phase transitions and physical property changes in tetragonal Fe1+yTe which are induced by composition, external pressure, and cationic substitution.
3

Physical Properties of Iron-based Superconductors Probed by Low-Temperature Specific-Heat Measurements

Mohamed, Mahmoud 07 November 2012 (has links) (PDF)
In this thesis, specific heat, magnetic susceptibility and resistivity studies on the iron-pnictide superconductors LiFeAs, NaFe1-xCoxAs, AFe2As2 (A = K, Ca, Ba), M1-xNaxFe2As2 (M = Ca, Ba), and Ca(Fe1-xCox)2Fe2As2 are presented, from which different intrinsic physical properties are resolved. The combined first-order spindensity wave/structural transition which occurs in the parent compounds of the 122 pnictide systems is shown to gradually shift to lower temperature for low doping levels. Upon higher doping, this transition is completely suppressed and simultaneously, superconductivity appears at lower temperature. In contrast, the phase diagram in Ca(Fe1-xCox)2Fe2As2 is shown to exhibit a pronounced region of coexistence of magnetism and superconductivity. Further important results reported in this work concern the electronic properties and superconducting-gap characteristics. In LiFeAs, the zero-field temperature dependence of the electronic specific heat can be well described by two s-wave gaps, whose magnitudes are in agreement with ARPES results. Our gap analysis in KFe2As2, Ca0.32Na0.68Fe2As2, and Ba0.65Na0.35Fe2As2 single crystals also implies the presence of two s-wave-like gaps. The magnetic phase diagram of LiFeAs and KFe2As2 for magnetic fields along both principal orientations has been constructed and an anisotropy of Hc2(T) of 3 and 5, respectively, has been obtained.
4

Angle-Resolved Photoelectron Spectroscopy Studies of the Many-Body Effects in the Electronic Structure of High-Tc Cuprates / Winkelaufgelöste Photoemissionsuntersuchungen zu Vielteilcheneffekten in der elektronischen Struktur von Hochtemperatursupraleitern / Исследования многочастичных эффектов в электронной структуре высокотемпературных сверхпроводников методом фотоэлектронной спектроскопии с угловым разрешением.

Inosov, Dmytro 27 June 2008 (has links) (PDF)
In spite of the failures to find an ultimate theory of unconventional superconductivity, after many years of research the scientific community possesses a considerable store of theoretical knowledge about the problem. Over time, the focus is gradually shifted from finding a theoretical description of an experimentally observed phenomenon to distinguishing between multiple models that offer comparably reasonable descriptions. From the point of view of an experimentalist, this means that any qualitative under-standing of an experimental observation would no longer suffice. Instead, the empha-sis in the experimental research should be shifted to accurate quantification of obser-vations, which becomes possible only if the results available from all the available ex-perimental methods are connected together by the theoretical glue. Among the meth-ods that are to be unified, ARPES plays a central role. The reason for this is that it gives access to the single-particle excitation spectrum of the material as a function of both momentum and energy with very high resolution. Other experimental techniques, such as inelastic neutron scattering (INS), Raman spectroscopy, or the newly estab-lished Fourier-transform scanning tunneling spectroscopy (FT-STS) probe more com-plicated two-particle spectra of the electrons and up to now can not achieve the mo-mentum resolution comparable with that of ARPES. Such reasoning serves as the mo-tivation for the present work, in which some steps are done towards understanding the anomalous effects observed in the single-particle excitation spectra of cuprates and relating the ARPES technique to other experimental methods. First, the electronic properties of BSCCO are considered — the superconducting cuprate most studied by surface-sensitive methods. The recent progress in un-derstanding the electronic structure of this material is reported, focusing mainly on the many-body effects (renormalization) and their manifestation in the ARPES spectra. The main result of this part of the work is a model of the Green’s function that is later used for calculating the two-particle excitation spectrum. Then, the matrix element effects in the photoemission spectra of cuprates are discussed. After a general introduction to the problem, the thesis focuses on the recently discovered anomalous behavior of the ARPES spectra that partially originates from the momentum-dependent photoemission matrix element. The momentum- and excitation energy dependence of the anomalous high-energy dispersion, termed “waterfalls”, is covered in full detail. Understanding the role of the matrix element effects in this phenomenon proves crucial, as they obstruct the view of the underlying excitation spectrum that is of indisputable interest. Finally, the work describes the relation of ARPES with other experimental methods, with the special focus on the INS spectroscopy. For the optimally doped bilayer Bi-based cuprate, the renormalized two-particle correlation function in the superconducting state is calculated from ARPES data within an itinerant model based on the random phase approximation (RPA). The results are compared with the experimental INS data on BSCCO and YBCO. The calculation is based on numerical models for the normal and anomalous Green’s functions fitted to the experimental single-particle spectra. The renormalization is taken into account both in the single-particle Green’s function by means of the self-energy, and in the two-particle correlation function by RPA. Additionally, two other applications of the same approach are briefly sketched: the relation of ARPES to FT-STS, and the nesting properties of Fermi surfaces in two-dimensional charge density wave systems.
5

The role of inter-plane interaction in the electronic structure of high Tc cuprates

Kim, Timur K. 10 April 2004 (has links) (PDF)
This thesis represents a systematic study of electronic structure of the modulation-free Pb-doped Bi2212 superconducting cuprates with respect to interlayer coupling done by using the angle-resolved photoemission spectroscopy (ARPES), which is a leading technique in the experimental investigation of the single particle excitations in solids. The results presented in this work indicate a very different origin for the observed complex spectra lineshape. Specifically, the peak-dip-hump lineshape can be easily understood in terms of the superposition of spectral features due to bilayer band splitting, namely the splitting of the CuO2 plane derived electronic structure in bonding and antibonding bands due to the interlayer coupling of CuO2 bilayer blocks within the unit cell of Bi2212. By performing experiments at synchrotron beamlines where the energy of the incoming photons can be tuned over a very broad range, the detailed matrix elements energy dependence for both bonding and antibonding bands was determined. This gave the opportunity to study the electronic properties these two bands separately. For the first time, it was proved that the superconducting gap has the same value and symmetry for both bands. Furthermore, having recognized and sorted out the bilayer splitting effects, it became possible to identify more subtle effects hidden in the details of the ARPES lineshapes. On underdoped samples an "intrinsic" peak-dip-hump structure due to the interaction between electrons and a bosonic mode was observed. Studying the doping, temperature, and momentum dependence of the photoemission spectra it was established that: the mode has a characteristic energy of 38-40 meV and causes strong renormalization of the electronic structure only in the superconducting state; the electron-mode coupling is maximal around the (?à,0) point in momentum space and is strongly doping dependent (being greatly enhanced in the underdoped regime). From the above, it was concluded that the bosonic mode must correspond to the sharp magnetic resonance mode observed in inelastic neutron scattering experiments, and that this coupling is relevant to superconductivity and the pairing mechanism in the cuprates.
6

Fermi Surface Calculations of Superconducting Compounds

Elgazzar, Saad 13 March 2006 (has links) (PDF)
In dieser Doktorarbeit wurde die elektronische Struktur von konventionellen und unkonventionellen Supraleitern untersucht. Das Ziel dieser Arbeit war es, die dHvA Parameter zu berechnen und mit experimentellen Daten zu vergleichen. Mit Hilfe des Bandstrukturprogrammes FPLO, welches auf der DFT basiert, untersuchten wir Diboride (MgB$_2$ und TaB$_2$) und schwere Fermionenverbindungen (CeMIn$_5$ und PuMGa$_5$, M=Co, Rh, und Ir) innerhalb der LSD-Näherung. / In this thesis theoretical study of the electronic structure of conventional and unconventional superconductor compounds was carried out. The goal was to calculate the dHvA parameters in comparison with available experimental data. By means of FPLO band structure code based on DFT within LSDA we investigated diborides (MgB$_2$ and TaB$_2$) and heavy fermion compounds (CeMIn$_5$ and PuMGa$_5$, M=Co, Rh, and Ir).
7

Physical properties of layered superconductors from angle-resolved photoemission spectroscopy (ARPES)

Evtushinsky, Daniil 06 June 2012 (has links) (PDF)
This thesis is devoted to studies of high temperature superconductors and related materials using the angle-resolved photoemission spectroscopy (ARPES). Though there is no accepted theory of superconductivity, encompassing high-$T_{\\rm c}$ materials, there is enough evidence to believe that superconductivity can always be interpreted as stemming from pairing of electrons by interaction with bosons, and $T_{\\rm c}$ is determined by effectiveness of such a pairing. ARPES, owing to the possibility of recording energy- and momentum-resolved electronic spectrum, is a powerful probe of the normal-state electronic structure, which is an important prerequisite for the superconductivity, and implications of the electron pairing, such as emergence of the superconducting gap and finer features below $T_{\\rm c}$. Based on ARPES data one can quantify the electronic interactions by analysis of kinks in the dispersion curves, spectral line widths etc. In current work new methods of ARPES data analysis were developed and applied to the spectra taken from cuprate and iron-based high-$T_{\\rm c}$. The possibility to analyze the macroscopic response of solids in the normal state as well as in the superconducting and charge-density-wave phases basing on the experimentally measured renormalized band dispersion and anisotropic superconducting and charge-density-wave gap was shown. The thesis consists of five parts. Part 1 introduces the employed notions of electrons in solids and methods of their investigation. Part 2 describes the Voigt fitting procedure, allowed for purification of the spectra from resolution effects, and, consequently, for determination of the quasiparticle scattering rate with enhanced precision. In Part 3 the calculation of the temperature-dependent Hall coefficient in the charge-density-wave-bearing 2H-TaSe$_2$ from the band dispersion, measured in ARPES, is presented, and comparison to the independent magnetotransport measurements is shown. The extraction of the band dispersion of Ba$_{1-x}$K$_{x}$Fe$_2$As$_2$ and LiFeAs from ARPES data can be found in Part 4. Agreement with Hall effect measurements on the same samples is demonstrated. Part 5 introduces the extraction of the momentum-dependent superconducting gap in iron arsenides from fitting of ARPES spectra to Dynes function. The superfluid density was calculated from the band dispersion and the superconducting gap, measured in ARPES, and compared to the ones measured by different techniques.
8

Crystal Growth and Investigation of CeCu2Si2 and YbRu2Ge2: Competition/Co-existence of Superconducting, Dipolar and Quadrupolar order

Jeevan, Hirale S. 07 April 2011 (has links) (PDF)
Strongly correlated systems represent one of the major topics in modern solid-state physics. The rare-earth intermetallic compounds belonging to this class provide rich grounds for investigation of various phenomena. They show one of the most fascinating types of ground states in condensed-matter physics. Among them are: Kondolattice effects, heavy fermion behavior, superconductivity, magnetic order, non-Fermi liquid behavior, and quantum phase transition. Those properties occur mainly due to two competing interactions, the Kondo effect and the Ruderman-Kittel-Kasuya-Yosida interaction. The study of unconventional superconductivity in heavy fermion systems attracted great interest over the last two decades. The exotic pairing mechanism (e.g. mediated by spin fluctuations) and the symmetry of the order parameter have been intensively discussed especially for superconducting Ce- and U-based compounds. The discovery of superconductivity below 0.65 K in the heavy-electron system CeCu2Si2 appeared unexpected as magnetic moments were known to destroy superconductivity. The pronounced anomaly of the electronic specific heat at Tc, however, strongly suggests that the unusual low temperature properties of heavy-electron systems indicate an unconventional origin of the superconducting phase. Since the discovery of superconductivity in CeCu2Si2, the question of the exact nature and origin of this phenomenon has been the subject of great interest in research. It has been postulated, that the superconductivity in these materials is not caused primarily by the usual electronphonon mechanism but rather by some magnetic interaction. CeCu2Si2 shows a rich phase diagram with different phases competing, depending on slight changes of the interactions. These properties are also strongly sample dependent. Small changes in composition eventually lead to changes in the electron interactions. These unique properties make this compound a fascinating subject of study. On the other hand it is difficult to synthesis the single crystals with defined physical properties. During the last three decades CeCu2Si2 has been an active research topic, from single crystal growth to sophisticated experiments like high-pressure measurements, neutron experiments etc. This thesis involved systematic investigations of the phase diagram, starting with the single crystal growth of different ground state and catheterized their physical properties including neutron experiments. The second part of the thesis contains, for the first time (to our knowledge), detailed investigations of the very interesting physical properties on YbRu2Ge2, which shows a quasiquartet crystalelectric-field ground state with quadrupolar ordering at 10 K. The first chapter is an overview of the underlying physics of heavy- fermion systems, including a description of the Doniach phase diagram. The second part of this chapter gives a brief introduction of crystalline-electric-field effect in rare-earth intermetallic compounds. Chapter 2. describes the experimental methods and crystal growth details. This chapter provides the main focus of this dissertation, presenting detailed experimental results for the different types of CeCu2Si2 crystals. Magnetic, thermodynamic and transport measurements on the new generation of large highquality single crystals were conducted by our research group. Furthermore, complimentary neutron investigations have been performed, which allowed to conclude that both magnetic and superconducting phases compete with each other. The effect of Ge doping on the Si site and possible coexistence of magnetic and superconducting phase is discussed in chapter 4. Chapter 5 provides a detailed investigation of the physical properties of YbRu2Ge2 single crystals. In addition, neutron experiments as well as the determination the magnetic structure and crystalline-electric-field scheme of YbRu2Ge2 are presented. The μSR experiments were also performed as a complimentary method to the neutron experiments. Chapter 6 ends the dissertation with a conclusion and summary.
9

High-field electron spin resonance study of electronic inhomogeneities in correlated transition metal compounds

Alfonsov, Alexey 12 October 2011 (has links) (PDF)
Electronic inhomogeneities play an important role in the definition of physical properties of correlated systems. To study these inhomogeneities one has to use local probe techniques which can distinguish electronic, magnetic and structural variations at the nanoscale. In the present work the high-field electron spin resonance technique (HF-ESR) is used to probe electronic and magnetic inhomogeneities in two transition-metal element based systems with very different properties. The first system is an iron based hightemperature superconductor, namely a member of a so called 1111-family, the (La,Gd)O1−xFxFeAs compound. Our HF-ESR spectroscopy study on Gd3+ ion has revealed that this material exhibits anisotropic interaction between Gd and Fe layers, which is frustrated in the absence of an external magnetic field. Moreover, the study of the superconducting samples has shown a coexistence of a static short range magnetic order with superconductivity up to high doping levels. The second system is a lightly hole doped cubic perovskite LaCoO3. Here, our HF-ESR investigation, complemented with static magnetometry and nuclear magnetic resonance techniques, has established that the hole doping induces a strong interaction between electrons on neighboring Co ions which leads to a collective high-spin state, called a spin-state polaron. These polarons are inhomogeneously distributed in the nonmagnetic matrix. This thesis is organized in three chapters. The first chapter gives basic ideas of magnetism in solids, focusing on the localized picture. The aim of the second chapter is to introduce the method of ESR. The third chapter is dedicated to the study of 1111-type iron arsenide superconductors. In the first part X-band (9.5 GHz) ESR measurements on 2% and 5% Gd-doped LaO1−xFxFeAs are presented. In the second part a combined investigation of the properties of GdO1−xFxFeAs samples by means of thermodynamic, transport and high-field electron spin resonance methods is presented. The last, fourth chapter presents the investigation of the unexpected magnetic properties of lightly hole-doped LaCoO3 cobaltite by means of the electron spin resonance technique complemented by magnetization and nuclear magnetic resonance measurements.
10

Local probe investigations of the electronic phase diagrams of iron pnictides and chalcogenides

Materne, Philipp 09 November 2015 (has links) (PDF)
In this work, the electronic phase diagrams of Ca1−xNaxFe2As2 and Fe1+yTe were investigated using muon spin relaxation and Mössbauer spectroscopy. Single crystals of Ca1−xNaxFe2As2 with x = 0.00, 0.35, 0.50, and 0.67 were examined. The undoped 122 parent compound CaFe2As2 is a semi metal and shows antiferromagnetic commensurate spin density wave order below 167 K. By hole doping via Na substitution, the magnetic order is suppressed and superconductivity emerges including a Na-substitution level region, where both phases coexist. Upon Na substitution, a tilting of the magnetic moments out of the ab-plane is found. The interaction of the magnetic and superconducting order parameter in this coexistence region was studied and a nanoscopic coexistence of both order parameters is found. This is proven by a reduction of the magnetic order parameter of 7 % in x = 0.50 below the superconducting transition temperature. This reduction was analysed using Landau theory and a systematic correlation between the reduction of the magnetic order parameter and the ratio of the transition temperatures, Tc/TN, for the 122 family of the iron pnictides is presented. The magnetic phase transition is accompanied by a tetragonal-to-orthorhombic phase transition. The lattice dynamics at temperatures above and below this magneto-structural phase transition were studied and no change in the lattice dynamics were found. However, the lattice for finite x is softer than for the undoped compound. For x = 0.67, diluted magnetic order is found. Therefore, the magnetism in Ca1−xNaxFe2As2 is persistent even at optimal doping. The superconducting state is investigated by measuring the temperature dependence of the magnetic penetration depth, where two superconducting gaps with a weighting of nearly 50:50 are obtained. A temperature independent anisotropy of the magnetic penetration depth γ_λ = 1.5(4) is obtained, which is much smaller compared to other 122 compounds indicating a more three-dimensional behaviour of Ca1−xNaxFe2As2. Powder samples of Fe1+yTe with y = 0.06, 0.12, 0.13, and 0.15 were examined. Fluctuating paramagnetic moments at room temperature were found, which are independent of the excess iron level y. Below 100 K, a magnetic precursor phase is observed, which is independent of y. Fe1.06Te shows a commensurate spin density wave phase below TN, while for y ≥ 0.13 an incommensurate spin density wave phase below TN is found. However, a slowing down of the magnetic fluctuations with decreasing temperature and static magnetic order at lowest temperature are observed. / In dieser Arbeit wurden die elektronischen Phasendiagramme von Ca1−xNaxFe2As2 and Fe1+yTe mit Hilfe der Myonspinrelaxations- und Mössbauerspektroskopie untersucht. Einkristalle von Ca1−xNaxFe2As2 mit x = 0.00, 0.35, 0.50 und 0.67 wurden untersucht. Das undorierte 122-System CaFe2As2 ist ein Halbmetal und zeigt eine antiferromagnetische Spindichtewelle unterhalb von 167 K. Substituiert man Ca durch Na, werden Löcher in das System eingebracht. Die magnetische Ordnung wird mit steigendem Na-Anteil unterdrückt und Supraleitung tritt auf. Dabei existiert ein Na-Substitutionslevelbereich, in welchem Magnetismus und Supraleitung koexistieren. Desweiteren wurde ein herausdrehen der magnetischen Momente aus der ab-Ebene als Funktion von x beobachtet. Die Wechselwirkung des magnetischen mit dem supraleitenden Ordnungsparameter in der Koexistenzregion wurde untersucht und nanoskopische Koexistenz der beiden Ordnungsparameter wurde gefunden. Dies konnte durch eine Reduktion des magnetischen Ordnungsparameteres um 7 % in x = 0.50 unterhalb der supraleitenden Ordnungstemperatur gezeigt werden. Diese Reduktion wurde mit Hilfe der Landautheorie untersucht und es wurden systematische Korrelationen zwischen der Reduktion des magnetischen Ordnungsparamteres und dem Verhältnis der Übergangstemperaturen, Tc/TN, in der 122-Familie der Eisenpniktide gefunden. Der magnetische Phasenübergang wird von einem strukturellen Phasenübergang begleitet. Die Gitterdynamik wurde bei Temperaturen oberhalb und unterhalb dieses magneto-elastischen Phasenübergangs untersucht. Es wurden keine Änderungen in der Gitterdynamik festgestellt. Jedoch konnte festgestellt werden, dass das Gitter für endliche x weicher ist als für das undotierte System. Für x = 0.67 wurde festgestellt, dass der Magnetismus im Ca1−xNaxFe2As2-System auch noch bei optimaler Dotierung zu finden ist. In der supraleitenden Phase wurde die Temperaturabghängigkeit der magnetischen Eindringtiefe untersucht und es wurden zwei supraleitende Bandlücken gefunden. Die Anisotropie der magnetischen Eindringtiefe ist temperaturunabhängig und mit γ_λ = 1.5(4) wesentlich kleiner als in anderen 122- Verbindungen, was für eine erhöhte Dreidimensionalität in Ca1−xNaxFe2As2 spricht. Pulverproben von Fe1+yTe mit y = 0.06, 0.12, 0.13 und 0.15 wurden untersucht. Es wurden fluktuierende paramagnetische Momente bei Raumtemperatur gefunden, welche unabhängig vom Überschusseisenlevel y sind. Unterhalb von 100 K wurde eine magnetische Vorgängerphase gefunden, welche unabhängig von y ist. Mit fallender Temperatur wurde eine Verlangsamung der magnetischen Fluktuationen festgestellt, welche in einer statischen magnetischen Ordnung bei tiefen Temperaturen münden.

Page generated in 0.0396 seconds