Circadian rhythms dictate the timing of both once-in-a-lifetime adult emergence (eclosion) and daily locomotor activity rhythms in the flesh fly S. crassipalpis. Light cycles are considered the primary environmental time cue (zeitgeber), but the life history of S. crassipalpis suggests that temperature cycles (thermocycles) may also play a key role. This work evaluates the efficacy of thermocycling as a zeitgeber in S. crassipalpis. We found that shifting both light and temperature cycles of sufficient amplitude affect the phasing of eclosion and locomotor activity, but result in different patterns. Additional experiments suggest greater thermocycle sensitivity during the late metamorphic period and that thermocycling reduces variance in eclosion times. Taken together, these findings suggest that temperature cycles can be used by S. crassipalpis to time eclosion and adult locomotor activity, and that S. crassipalpis may be physiologically primed to use thermocycle information during metamorphosis.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-5661 |
Date | 01 December 2022 |
Creators | Ragsdale, Raven |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Rights | Copyright by the authors. |
Page generated in 0.2394 seconds