Trimethylation of histone H3 lysine 9 (H3K9me3) and DNA methylation mark heterochromatin, contributing to gene silencing and normal cellular functions. My research investigated the control of H3K9me3 and DNA methylation in the filamentous fungus Neurospora crassa. The H3K9 methyltransferase complex, DCDC, consists of DIM-5, DIM-7, DIM-9, DDB1, and CUL4. Each component of DCDC is required for H3K9me3. The DIM-9/DDB1/CUL4 subunits are reminiscent of known cullin E3 ubiquitin ligases. I showed that core features of CUL4-based E3 ubiquitin ligases are not required for H3K9me3 and DNA methylation in Neurospora.
H3K9me3 is bound by heterochromatin protein 1 (HP1) to recruit the DIM-2 DNA methyltransferase and the HCHC histone deacetylase complex. HCHC consists of HP1, CDP-2, HDA-1, and CHAP. Both HP1 and CDP-2 harbor conserved chromodomains that bind H3K9me3, and CHAP contains two putative AT-hook domains that bind A:T-rich DNA. To test the contributions of these domains to HCHC function, I deleted the chromodomains of HP1 and CDP-2. Deletion of the HP1 chromodomain resulted in a reduction of DNA methylation, which was not exacerbated by deletion of the CDP-2 chromodomain. A strain with deletions of chap and the HP1 chromodomain showed a DNA methylation phenotype comparable to the loss of the HDA-1 catalytic subunit. These findings support a model in which recognition of H3K9me3 and A:T-rich DNA by HP1 and CHAP, respectively, are required for proper HCHC function.
To examine the relationships between H3K9me3, DNA methylation, and histone acetylation, I utilized in vivo protein tethering of core heterochromatin components. The requirement of DIM-7 for native heterochromatin, previously implicated in localizing the H3K9 methyltransferase DIM-5, was not bypassed by DIM-5 tethering, indicating that DIM-7 has additional roles within the DCDC. Artificial localization of the HCHC histone deacetylase, by tethering HP1 or HDA-1, resulted in induction of H3K9me3, DNA methylation, and gene silencing, but silencing did not require H3K9me3 or DNA methylation. HCHC-mediated establishment of H3K9me3 was not required for de novo heterochromatin formation at native heterochromatic loci suggesting a role in heterochromatin spreading. Together, this work implicates HDA-1 activity as a key driver of heterochromatin spreading and silencing.
This dissertation includes previously published co-authored material.
Identifer | oai:union.ndltd.org:uoregon.edu/oai:scholarsbank.uoregon.edu:1794/23129 |
Date | 10 April 2018 |
Creators | Gessaman, Jordan |
Contributors | Stankunas, Kryn |
Publisher | University of Oregon |
Source Sets | University of Oregon |
Language | en_US |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Rights | All Rights Reserved. |
Page generated in 0.002 seconds