Return to search

Approche probabiliste des particules collantes et système de gaz sans pression

A chaque instant $t$, nous construisons la dynamique des particules collantes dont la masse est distribuée initialement suivant une fonction de répartition $F_0$, avec une vitesse $u_0$, à partir de l'enveloppe convexe $H(\cdot,t)$ de la fonction $m\in (0,1)\mapsto \int_a^m\big( F_0^(-1)(z) + tu_0\big(F_0^(-1)(z)\big)\big)dz$. Ici, $F_0^(-1)$ est l'une des deux fonctions inverses de $F_0$. Nous montrons que les deux processus stochastiques $X_t^-(m)= \partial_m^-H(m,t),\; X_t^+(m) = \partial_m^+H(m,t)$, définis sur l'espace probabilisé $([0, 1], (\cal B), \lambda)$, sont indistinguables et ils modélisent les trajectoires des particules. Le processus $X_t:= X_t^- = X_t^+$ est une solution de l'équation $(EDS): \; \frac(dX_t)(dt) =\E[ u_0(X_0)/X_t]$, telle que $P(X_0 \leq x) = F_0(x)\,\,\forall x$. L'inverse $M_t:= M(\cdot,t)$ de la fonction $m\mapsto \partial_mH(m,t)$ est la fonction de répartition de la masse à l'instant $t$. Elle est aussi la fonction de répartition de la variable aléatoire $X_t$. On montre l'existence d'un flot $(\phi(x,t,M_s, u_s))_( s < t)$ tel que $X_t= \phi(X_s,t,M_s,u_s)$, où $u_s(x) = \E[ u_0(X_0)/X_s = x]$ est la fonction vitesse des particules à l'instant $s$. Si $\frac(dF_0^n)(dx)$ converge faiblement vers $\frac(dF_0)(dx)$, alors la suite des flots $\phi(\cdot,\cdot,F_0^n,u_0)$ converge uniformément, sur tout compact, vers $\phi(\cdot,\cdot,F_0,u_0)$. Ensuite, nous retrouvons et étendons certains résultats des équations aux dérivées partielles, à savoir que la fonction $(x,t)\mapsto M(x,t)$ est la solution entropique d'une loi de conservation scalaire de donnée initiale $F_0$, et la famille $\big(\rho(dx,t) = P(X_t\in dx),\, u(x,t) = \E[ u_0(X_0)/X_t = x]\big)_(t >0)$ est une solution faible du système de gaz sans pression de données initiales $\frac(dF_0(x))(dx), u_0$. Cette thèse contient aussi d'autres solutions de l'équation différentielle stochastique $(EDS)$ ci-dessus.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00008721
Date16 June 2003
CreatorsMoutsinga, Octave
PublisherUniversité des Sciences et Technologie de Lille - Lille I
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0021 seconds