Dans cette thèse nous proposons une méthode pour résoudre certains problèmes de Cauchy à données irrégulières ou caractéristiques en utilisant les récentes théories des fonctions généralisées. Nous étudions dans la première partie un problème de Cauchy et un problème de Goursat réguliers avec des données sur une courbe monotone. La deuxième partie est consacrée à la mise en place d'une algèbre adaptée à la résolution du problème de Cauchy généralisé. Dans la troisième partie nous donnons un sens à un problème de Cauchy généralisé et nous montrons qu'il admet une unique solution. Nous étudions de même un problème de Goursat généralisé. Dans la quatrième partie nous approchons un problème de Cauchy caractéristique par une famille de problèmes non caractéristiques. La famille de solutions est un représentant d'une fonction généralisée que nous considérons comme la solution généralisée du problème dans une algèbre appropriée. Nous donnons un sens au problème de Cauchy caractéristique dans le cas de données irrégulières en le remplaçant par une famille de problèmes non caractéristiques dans une algèbre convenable dépendant de deux paramètres. Le premier paramètre permet de se ramener à un problème non caractéristique que le second rend régulier. La famille de solutions est un représentant d'une fonction généralisée que nous considérons comme la solution du problème.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00012098 |
Date | 11 April 2005 |
Creators | Devoue, Victor |
Publisher | Université des Antilles-Guyane |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0014 seconds