Return to search

Multiscale basis optimization for Darcy flow

Simulation of flow through a heterogeneous porous medium with fine-scale features can be computationally expensive if the flow is fully resolved. Coarsening the problem gives a faster approximation of the flow but loses some detail. We propose an algorithm that obtains the fully resolved approximation but only iterates on a sequence of coarsened problems. The sequence is chosen by optimizing the shapes of the coarse finite element basis functions. As a stand-alone method, the algorithm converges globally and monotonically with a quadratic asymptotic rate. Computational experience indicates the number of iterations needed is independent of the resolution and heterogeneity of the medium. However, an externally provided error estimate is required; the algorithm could be combined as an accelerator with another iterative algorithm. A single "inner" iteration of the other algorithm would yield an error estimate; following it with an "outer" iteration of our algorithm would give a viable method. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/3977
Date29 August 2008
CreatorsRath, James Michael, 1975-
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatelectronic
RightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.

Page generated in 0.0015 seconds