We examine the effect of lane preference on a quasi one-dimensional three-state driven lattice gas, consisting of holes and positive and negative particles, and periodic boundary conditions in the longitudinal direction. Particles move via particle-hole and, with a lesser rate, particle-particle exchanges; the species are driven in opposite directions along the lattice, each preferring one of the lanes with a given probability, <I>p</I>. The model can be interpreted as traffic flow on a two-lane beltway, with fast cars preferring the left lane and slow cars preferring the right, viewed in a comoving frame. In steady-sate, the system typically exhibits a macroscopic cluster containing a majority of the particles. At very high values of <I>p</I>, a first order transition takes the system to a spatially disordered state. Using Monte Carlo simulations to analyze the system, we find that the size of the cluster increases with lane preference. We also observe a region of negative response, where increasing the lane preference <I>decreases</I> the number of particles in their favored lane, against all expectations. In addition, simulations show an intriguing sequence of density profiles for the two species. We apply mean-field theory, continuity equations, and symmetries to derive relationships between observables to make a number of predictions verified by the Monte Carlo data. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/42365 |
Date | 06 May 2004 |
Creators | Krometis, Justin |
Contributors | Mathematics, Hagedorn, George A., Zia, Royce K. P., Schmittmann, Beate |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | etd.pdf |
Page generated in 0.0022 seconds