Return to search

ERG保護UVA誘導人類皮膚角質細胞的氧化壓力傷害及機制探討 / Protective Effect of ERG on UVA-Irradiated Human Keratinocytes HaCaT Cells

目錄…………………………………………………………………………I
圖目錄……………………………………………………………………IV
表目錄……………………………………………………………………VI
縮寫表……………………………………………………………………VII
謝誌………………………………………………………………………IX
中文摘要…………………………………………………………………XI
英文摘要…………………………………………………………………XIII
第壹章、前言………………………………………………………………1
第貳章、文獻探討…………………………………………………………3
第2-1節 紫外線…………………………………………………….…..4
2-1-1. 紫外線……………………………………………………….4
2-1-2. 紫外線的分類……………………………………………….5
2-1-3. 紫外線對人體健康的益處………………………………….6
2-1-4. 紫外線對人體的傷害……………………………………….7
第2-2節 自由基…………………………………………………………8
2-2-1. 自由基的介紹……………………………………………….8
2-2-2. 自由基的來源……………………………………………….8
2-2-3. 紫外線與自由基…………………………………………….9
2-2-4. 自由基種類………………………………………………….9
第2-3節 抗氧化酵素訊息的傳遞路徑………………………………..12
2-3-1. Nf2…………………………………………………………..12
2-3-2. Keap1………………………………………………………..12
2-3-3. ARE………………………………………………………….13
2-3-4. Nrf2的活化機制…………………………………………….14
第2-4節 細胞抗氧化的防禦系統……………………………………17
2-4-1. 酵素型抗氧化防禦系統…………………………………..18
2-4-2. 非酵素型抗氧化防禦系統………………………………...24
第參章、研究動機與實驗設計架構圖……………………………………...25
第3-1節 硏究動機……………………………………………………..26
第3-2節 實驗設計架構………………………………………………..27
第肆章、實驗材料與方法……………………… …………………………28
第4-1節 實驗材料……………………………………………………...29
第4-2節 實驗儀器……………………………………………………...32
第4-3節 實驗方法……………………………………………………...33
4-3-1. 細胞培養…………………………………………………...33
4-3-2. 存活率試驗………………………………………………...36
4-3-3. ROS產量測定………………………………………………38
4-3-4. 細胞毒性的測定…………………………………………...40
4-3-5. Comet assay彗星試驗………………………………………41
4-3-6. 細胞GSH含量測定………………………………………..44
4-3-7. 細胞凋亡試驗……………………………………………...46
4-3-8. 細胞總蛋白質萃取………………………………………...48
4-3-9. 細胞核與細胞質之蛋白質萃取…………………………...49
4-3-10. 蛋白質定量……………………………………………….51
4-3-11. 西方墨點分析…………………………………………….52
4-3-12. 免疫螢光染色…………………………………………….56
4-3-13. 轉染作用………………………………………………….58
4-3-14. 冷光酵素報導基因分析………………………………….60
4-3-15. RNA干擾…………………………………………………62
4-3-16. 統計分析………………………………………………….64
第伍章、實驗結果與圖表…………………………………………………65
第5-1節 ERG對HaCaT細胞的抗光氧化能力………………………66
5-1-1. ERG以及UVA對HaCaT細胞的細胞毒性影響…………66
5-1-2. ERG對UVA誘導活性氧物種含量之影響………………..66
5-1-3. ERG對UVA誘導的細胞膜損傷之影響…………………..67
5-1-4. ERG對UVA誘導的DNA損傷之影響……………………67
5-1-5. ERG對UVA所誘導之氧化傷害的影響…………………..68
5-1-6. ERG對UVA引發之細胞凋亡的影響……………………..68
第5-2節 ERG誘導之抗氧化系統的機制探討………………………..79
5-2-1. ERG對抗氧化酵素的影響…………………………………79
5-2-2. ERG活化Nrf2路徑探討……………………………………80
5-2-3. ERG影響Nrf2入核的表現………………………………..80
5-2-4. ERG對抗氧化酵素轉錄的影響……………………………81
5-2-5. 以siNrf2探討ERG的保護機制和Nrf2之間的關係……81
第陸章、討論………………………………………………………………95
第6-1節 ERG對於UVA刺激HaCaT細胞造成的細胞損傷之影響..97
第6-2節 ERG對抗氧化基因的表現之影響………………………….97
第6-3節 ERG與UVA影響Nrf2-Keap1 pathway……………………98
第6-4節 Nrf2對ERG所抑制UVA造成之光氧化傷害的影響……..98
第柒章、結論……………… …………………………………………..100
參考文獻 ………………….……………………………………………..102

Identiferoai:union.ndltd.org:TW/101CMCH5793001
Date January 1900
Creators羅珩瑋, Heng-wei Luo
Contributors許游章, You-Cheng Hseu
Publisher中國醫藥大學, 藥用化妝品學系碩士班
Source SetsNational Digital Library of Theses and Dissertations in Taiwan
Language中文
Detected LanguageUnknown
Type碩士
Format113
Relation[1] Oh JH, Chung AS, Steinbrenner H, Sies H, Brenneisen B, Thioredoxin secreted upon ultraviolet A irradiation modulates activities of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in human dermal fibroblasts, Arch. Biochem. Biophys. 2004;423 218–226. [2] Bachelor MA, Bowden GT, UVA-mediated activation of signaling pathways involved in skin tumor promotion and progression, Semin. Cancer Biol. 2004;14 131–138. [3] He YY, Huang JL, Chignell CF, Delayed and sustained activation of extracellular signal-regulated kinase in human keratinocytes by UVA: implications in carcinogenesis, J. Biol. Chem. 2004;279 53867–53874. [4] Fisher GJ, Datta SC, Talwar HS, Wang ZQ, Varani JS, Kang JJ. Molecular basis of sun-induced premature skin ageing and retinoid antagonism, Nature 1996;379, 335–339. [5] Tobi SE, Gilbert M, Paul N, and McMillan TJ. The green tea polyphenol, epigallocatechin-3-gallate, protects against the oxidative cellular and genotoxic damage of UVA radiation. Int J Cancer. 2002;102, 439-44. [6] Jablonski NG, Chaplin G. The evolution of human skin coloration. J Hum Evol 2000;39(1), 57-106. [7] Shaw PS, Gupta R, and Lykke KR. Characterization of an ultraviolet and a vacuum-ultraviolet irradiance meter with synchrotron radiation. Appl Opt 2002;41, 7173-8. [8] Downs NJ, Schouten PW, Parisi AV, Turner J. Measurements of the upper body ultraviolet exposure to golfers: non-melanoma skin cancer risk, and the potential benefits of exposure to sunlight. Photodermatol Photoimmunol Photomed. 2009;(6):317-24. [9] Cho JW, Park K, Kweon GR, Jang BC, Baek WK, Suh MH, Kim CW, Lee KS, Suh SI. Curcumin inhibits the expression of COX-2 in UVB-irradiated human keratinocytes (HaCaT) by inhibiting activation of AP-1: p38 MAP kinase and JNK as potential upstream targets. Exp Mol Med. 2005;37(3):186-92. [10] Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S, Voorhees JJ. Mechanisms of photoaging and chronological skin aging. Arch Dermatol 2002;138(11), 1462-70. [11] Hseu YC, Chou CW, Senthil Kumar KJ, Fu KT, Wang HM, Hsu LS, Kuo YH, Wu CR, Chen SC, Yang HL. Ellagic acid protects human keratinocyte (HaCaT) cells against UVA-induced oxidative stress and apoptosis through the upregulation of the HO-1 and Nrf-2 antioxidant genes. Food Chem Toxicol. 2012;50(5):1245-55. [12] Lahmann C, Young AR, Wittern KP, Bergemann J. Induction of mRNA for matrix metalloproteinase 1 and tissue inhibitor of metalloproteinases 1 in human skin in vivo by solar simulated radiation. Photochem Photobiol. 2001;73(6):657-63. [13] Webb AR, Engelsen O. Calculated ultraviolet exposure levels for a healthy vitamin D status. Photochem Photobiol 2006;82(6), 1697-703. [14] Deeb KK, Trump DL, Johnson CS. Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer. 2007;7(9):684-700. [15] Dawe RS, Cameron H, Yule S, Man I, Wainwright NJ, Ibbotson SH, Ferguson J. A randomized controlled trial of narrowband ultraviolet B vs bath-psoralen plus ultraviolet A photochemotherapy for psoriasis. Br J Dermatol 2003;148(6):1194-204. [16] Kirke SM, Lowder S, Lloyd JJ, Diffey BL, Matthews JN, Farr PM. A randomized comparison of selective broadband UVB and narrowband UVB in the treatment of psoriasis. J Invest Dermatol 2007;127(7):1641-6. [17] Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Mutations of the BRAF gene in human cancer. Nature 2002;417(6892):949-54. [18] Latonen L, Laiho M. Cellular UV damage responses--functions of tumor suppressor p53. Biochim Biophys Acta. 2005;1755(2):71-89. [19] Wang J, Lofgren S, Dong X, Galichanin K, Soderberg PG. Dose-response relationship for α-tocopherol prevention of ultraviolet radiation induced cataract in rat. Exp Eye Res 2011;93(1):91-7. [20] Varma SD, Kovtun S, Hegde KR. Role of ultraviolet irradiation and oxidative stress in cataract formation-medical prevention by nutritional antioxidants and metabolic agonists. Eye Contact Lens 2011;37(4):233-45. [21] Kato Y, Igarashi H, Kanno H, Tanaka K, Yoshida A. Metabolic changes during cataract formation by ultraviolet radiation in the incubated rabbit lens. Hokkaido Igaku Zasshi 2009;84(6):423-30. [22] Beissert S, Schwarz T.Ultraviolet-induced immunosuppression: implications for photocarcinogenesis. Cancer Treat Res 2009;146, 109-21. [23] Pillai S, Oresajo C, Hayward J. Ultraviolet radiation and skin ageing: role of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation-a review. Int J Cosmet Sci 2005;27:17-34. [24] Andreassi M, Andreassi L. Antioxidant in dermocosmetology: from the laboratory to clinical application. J Cosmet Dermatol 2004;2:153-60. [25] Devasagayam TP, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD. Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India 2004;52:794-804. [26] Imlay JA , Fridovich I . Assay of metabolic superoxide production in Escherchia coli. J Biol Chem 1991;266: 6957-6965. [27] Halliwell B. Oxidants and human disease: some new concepts . FASEB J. 1987;1:358-364. [28] Halliwell B, Cutteridge JMC. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts . Arch. Biochem Biophys. 1986;246:501-514. [29] Church DF, Prypr WA. Free radical chemistry of cigarette smoke andits toxicological implications. Environ health perspect. 1985;64:111-126. [30] Beissert S, Schwarz T. Ultraviolet-induced immunosuppression: implications for photocarcinogenesis. Cancer Treat Res 2009;146:109-21. [31] Pfeifer GP, You YH, Besaratinia A. Mutations induced by ultraviolet light. Mutat Res 2005;571(1-2), 19-31. [32] Steenvoorden DP, van Henegouwen GM. The use of endogenous antioxidants to improve photoprotection. J Photochem Photobiol B. 1997;41(1-2):1-10. [33] Steenvoorden DP, Beijersbergen van Henegouwen G.Protection against UV-induced systemic immunosuppression in mice by a single topical application of the antioxidant vitamins C and E. Int J Radiat Biol. 1999;75(6):747-55. [34] Agar NS, Halliday GM, Barnetson RS, Ananthaswamy HN, Wheeler M, Jones AM. The basal layer in human squamous tumors harbors more UVA than UVB fingerprint mutations: a role for UVA in human skin carcinogenesis. Proc Natl Acad Sci U S A 2004;101(14):4954-9. [35] Saladi RN, persaud AN. The causes of skin cancer: A comprehensive review. Drugs Today (Barc) 2005;41(1):37-53. [36] Ichihashi M, Ueda M, Budiyanto A, Bito T, Oka M, Fukunaga M, Tsuru, K, Horikawa T. UV-induced skin damage. Toxicology 2003;189(1-2), 21-39. [37] D''Autreaux B, Toledano MB. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 2007;8(10):813-24. [38] Hippeli S, Elstner EF.OH-radical-type reactive oxygen species: a short review on the mechanisms of OH-radical- and peroxynitrite toxicity. Z Naturforsch C 1997;52(9-10):555-63. [39] Nordberg J, Arner ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 2001;31(11), 1287-312. [40] Rastogi A, Yadav DK, Szymańska R, Kruk J, Sedlařova M, Pospišil P. Singlet oxygen scavenging activity of tocopherol and plastochromanol in Arabidopsis thaliana: Relevance to photooxidative stress. Plant Cell Environ. 2013; doi: 10.1111/pce.12161. [41] Si CL, Shen T, Jiang YY, Wu L, Yu GJ, Ren XD, Xu GH, Hu WC. Antioxidant properties and neuroprotective effects of isocampneoside II on hydrogen peroxide-induced oxidative injury in PC12 cells. Food Chem Toxicol 2013;59C:145-152. [42] Kohen R. Skin antioxidants: their role in aging and in oxidative stress--new approaches for their evaluation. Biomed Pharmacother 1999;53(4), 181-92. [43] El Assar M, Angulo J, Rodriguez-Manas L. Oxidative stress and vascular inflammation in aging. Free Radic Biol Med 2013;S0891-5849(13)00330-4. [44] Murray JC, Burch JA, Streilein RD, Iannacchione MA, Hall RP, Pinnell SR.A topical antioxidant solution containing vitamins C and E stabilized by ferulic acid provides protection for human skin against damage caused by ultraviolet irradiation. J Am Acad Dermatol 2008;59(3), 418-25. [45] Hamilton RJ, Kalu C, Prisk E, Pasley FB, Pierce H. Chemistry of free radicals in lipids. Food Chem. 1997;60:193-199. [46] Tamura H, Kitta K, Shibamoto T. Formation of reactive aldehydes from fatty acids in a Fe2+/H2O2 oxidation system. J Agric Food Chem. 1991;39:439-442. [47] Wang MY, Liehr JG. Lipid hydroperoxide-induced endogenous DNA adducts in hamsters; possible mechanism of lipid hydroperoxide-mediated carcinogenesis. Arch Biochem Biophys. 1995;316:38-46. [48] Morrissey PA, O''Brien N M. Dietary antioxidants in health and disease. Int Dairy Journal. 1998:8:463-472. [49] Williams RJ, Spencer JP, Rice-Evans. Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 2004;36(7): p.838-49. [50] Venugopal R, Jaiswal AK. Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes. Oncogene. 1998;17(24):3145-56. [51] Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;236(2):313-22. [52] Yet SF, Layne MD, Liu X, Chen YH, Ith B, Sibinga NE, Perrella MA. Absence of heme oxygenase-1 exacerbates atherosclerotic lesion formation and vascular remodeling. FASEB J 2003;17(12):1759-61. [53] Motohashi H, O''Connor T, Katsuoka F, Engel JD, Yamamoto M. Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene 2002;294(1-2):1-12. [54] Pi J, Qu W, Reece JM, Kumagai Y, Waalkes MP. Transcription factor Nrf2 activation by inorganic arsenic in cultured keratinocytes: involvement of hydrogen peroxide. Exp Cell Res. 2003;290(2):234-45. [55] Taguchi K, Motohashi H, Yamamoto M. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells 2011;16(2):123-40. [56] Kobayashi A, Ohta T, Yamamoto M. Unique function of the Nrf2-Keap1 pathway in the inducible expression of antioxidant and detoxifying enzymes. Methods Enzymol. 2004;378:273-86. [57] Liebler DC, Guengerich FP. Elucidating mechanisms of drug-induced toxicity. Nat Rev Drug Discov 2005;4(5):410-20. [58] Copple, I. M., Goldring, C. E., Kitteringham, N. R., and Park, B. K. (2010). The keap1-nrf2 cellular defense pathway: mechanisms of regulation and role in protection against drug-induced toxicity. Handb Exp Pharmacol(196), 233-66. [59] Dhakshinamoorthy S, Jaiswal AK. Functional characterization and role of INrf2 in antioxidant response element-mediated expression and antioxidant induction of NAD(P)H:quinone oxidoreductase1 gene. Oncogene. 2001;20(29):3906-17. [60] Magesh S, Chen Y, Hu L. Small Molecule Modulators of Keap1-Nrf2-ARE Pathway as Potential Preventive and Therapeutic Agents. Med Res Rev. 2012;32(4):687-726.. [61] McMahon M, Itoh K, Yamamoto M, Hayes JD. Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J Biol Chem 2003;278(24):21592-600. [62] Kong AN, Owuor E, Yu R, Hebbar V, Chen C, Hu R, Mandlekar S. Induction of xenobiotic enzymes by the MAP kinase pathway and the antioxidant or electrophile response element (ARE/EpRE). Drug Metab Rev 2001;33(3-4):255-71. [63] Rushmore TH, Morton MR, Pickett CB. The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem 1991;266(18):11632-9. [64] Surh YJ, Kundu JK, Na HK. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med. 2008;74(13):1526-39. [65] Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y, Yamamoto M, Talalay P. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci U S A. 2002 ;99(18):11908-13. [66] Surh YJ, Kundu JK, Na HK. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med. 2008;74(13):1526-39. [67] Sporn MB, Liby KT. NRF2 and cancer: the good, the bad and the importance of context. Nat Rev Cancer 2012;12(8):564-71. [68] Xu C, Yuan X, Pan Z, Shen G, Kim JH, Yu S, Khor TO, Li W, Ma J, Kong AN. Mechanism of action of isothiocyanates: the induction of ARE-regulated genes is associated with activation of ERK and JNK and the phosphorylation and nuclear translocation of Nrf2. Mol Cancer Ther 2006;5(8):1918-26. [69] Vomhof-Dekrey EE, Picklo MJ Sr. The Nrf2-antioxidant response element pathway: a target for regulating energy metabolism. J Nutr Biochem 2012;23(10):1201-6. [70] Valko, M., et al., Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol, 2007. 39(1): p. 44-84. [71] 76. Berlett, B.S. and E.R. Stadtman, Protein oxidation in aging, disease, and oxidative stress. J Biol Chem, 1997. 272(33): p. 20313-6. [72] Drabkin, D.L. and C.D. Wise, Creation of a crystalline interspecies hybrid of hemoglobin at pH close to neutrality. J Biol Chem, 1962. 237: p. PC261-PC263. [73] Gruber, F., et al., NF-E2-related factor 2 regulates the stress response to UVA-1-oxidized phospholipids in skin cells. FASEB J, 2010. 24(1): p. 39-48. [74] Siow, R.C., et al., Induction of antioxidant stress proteins in vascular endothelial and smooth muscle cells: protective action of vitamin C against atherogenic lipoproteins. Free Radic Res, 1999. 31(4): p. 309-18. [75] Arosio, P., R. Ingrassia, and P. Cavadini, Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim Biophys Acta, 2009. 1790(7): p. 589-99. [76] Balla, J., et al., Heme, heme oxygenase and ferritin in vascular endothelial cell injury. Mol Nutr Food Res, 2005. 49(11): p. 1030-43. [77] Baranano, D.E., et al., Biliverdin reductase: a major physiologic cytoprotectant. Proc Natl Acad Sci U S A, 2002. 99(25): p. 16093-8. [78] Ryter, S.W., J. Alam, and A.M. Choi, Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev, 2006. 86(2): p. 583-650. [79] Franklin, C.C., et al., Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase. Mol Aspects Med, 2009. 30(1-2): p. 86-98. [80] Dickinson, D.A. and H.J. Forman, Cellular glutathione and thiols metabolism. Biochem Pharmacol, 2002. 64(5-6): p. 1019-26. [81] Seelig, G.F. and A. Meister, Gamma-glutamylcysteine synthetase. Interactions of an essential sulfhydryl group. J Biol Chem, 1984. 259(6): p. 3534-8. [82] Rebrin, I. and R.S. Sohal, Pro-oxidant shift in glutathione redox state during aging. Adv Drug Deliv Rev, 2008. 60(13-14): p. 1545-52. [83] Soyalan, B., et al., Apple juice intervention modulates expression of ARE-dependent genes in rat colon and liver. Eur J Nutr, 2011. 50(2): p. 135-43. [84] Young, I.S. and J.V. Woodside, Antioxidants in health and disease. J Clin Pathol, 2001. 54(3): p. 176-86. [85] Mates, J.M., et al., Antioxidant enzymatic activities in human blood cells after an allergic reaction to pollen or house dust mite. Blood Cells Mol Dis, 1999. 25(2): p. 103-9. [86] Kirkman, H.N., S. Galiano, and G.F. Gaetani, The function of catalase-bound NADPH. J Biol Chem, 1987. 262(2): p. 660-6. [87] Galecka, E., et al., [Antioxidative enzymes--structure, properties, functions]. Pol Merkur Lekarski, 2008. 25(147): p. 266-8. [88] Halliwell, B. and C.E. Cross, Oxygen-derived species: their relation to human disease and environmental stress. Environ Health Perspect, 1994. 102 Suppl 10: p. 5-12. [89] Griffith, O.W. and R.T. Mulcahy, The enzymes of glutathione synthesis: gamma-glutamylcysteine synthetase. Adv Enzymol Relat Areas Mol Biol, 1999. 73: p. 209-67, xii. [90] Wefers, H. and H. Sies, The protection by ascorbate and glutathione against microsomal lipid peroxidation is dependent on vitamin E. Eur J Biochem, 1988. 174(2): p. 353-7. [91] Pompella, A., et al., The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol, 2003. 66(8): p. 1499-503. [92] Halliwell, B. and C.E. Cross, Oxygen-derived species: their relation to human disease and environmental stress. Environ Health Perspect, 1994. 102 Suppl 10: p. 5-12. [93] Knapen, M.F., et al., Glutathione and glutathione-related enzymes in reproduction. A review. Eur J Obstet Gynecol Reprod Biol, 1999. 82(2): p. 171-84. [94] Griffith, O.W. and R.T. Mulcahy, The enzymes of glutathione synthesis: gamma-glutamylcysteine synthetase. Adv Enzymol Relat Areas Mol Biol, 1999. 73: p. 209-67, xii. [95] Tuschl, T. (2001). RNA interference and small interfering RNAs. Chembiochem 2(4), 239-45. [96] Lochmatter, D., and Mullis, P. E. (2011). RNA interference in mammalian cell systems. Horm Res Paediatr 75(1), 63-9. [97] Johnson, G. D., and Nogueira Araujo, G. M. (1981). A simple method of reducing the fading of immunofluorescence during microscopy. J Immunol Methods 43(3), 349-50. [98] Tice, R. R., Agurell, E., Anderson, D., Burlinson, B., Hartmann, A., Kobayashi, H., Miyamae, Y., Rojas, E., Ryu, J. C., and Sasaki, Y. F. (2000). Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35(3), 206-21. [99] Wondrak, G. T., Jacobson, M. K., and Jacobson, E. L. (2006). Endogenous UVA-photosensitizers: mediators of skin photodamage and novel targets for skin photoprotection. Photochem Photobiol Sci 5(2), 215-37. [100] Wei, H., Cai, Q., Tian, L., and Lebwohl, M. (1998). Tamoxifen reduces endogenous and UV light-induced oxidative damage to DNA, lipid and protein in vitro and in vivo. Carcinogenesis 19(6), 1013-8. [101] Copple, I. M., Goldring, C. E., Kitteringham, N. R., and Park, B. K. (2010). The keap1-nrf2 cellular defense pathway: mechanisms of regulation and role in protection against drug-induced toxicity. Handb Exp Pharmacol(196), 233-66. [102] Girish, C., and Pradhan, S. C. (2008). Drug development for liver diseases: focus on picroliv, ellagic acid and curcumin. Fundam Clin Pharmacol 22(6), 623-32. [103] Kimura, S., Warabi, E., Yanagawa, T., Ma, D., Itoh, K., Ishii, Y., Kawachi, Y., and Ishii, T. (2009). Essential role of Nrf2 in keratinocyte protection from UVA by quercetin. Biochem Biophys Res Commun 387(1), 109-14.

Page generated in 0.0029 seconds