La biogenèse du ribosome est un processus indispensable à la prolifération cellulaire car elle permet la synthèse protéique assurant la croissance avant la division cellulaire. Les ribosomopathies telles que le syndrome myélodysplasique 5q- et l’anémie de Blackfan-Diamond sont dues respectivement à une mutation d’un gène codant une protéine ribosomique (RP) et à l’haploinsuffisance en RPS14, RP de la petite sous-unité du ribosome. Les patients atteints de l’une de ces ribosomopathies présentent un défaut de l’érythropoïèse suggérant que celle-ci est particulièrement dépendante du ribosome. L’érythropoïèse est le processus qui permet la formation de globules rouges à partir de cellules souches hématopoïétiques et consiste en différents stades de différenciation appelés érythroblastes. C’est dans ce contexte que je me suis intéressée au ribosome au cours de l’érythropoïèse. Dans un premier temps, nous avons caractérisé la biogenèse du ribosome dans des cellules érythroïdes primaires humaines et murines. Pour cela nous avons adapté une technique de SILAC pulsé et mis au point la ribomique, technique de protéomique permettant l’analyse de la biogenèse du ribosome dans des échantillons de cellules primaires basée sur l’identification presque exhaustive des protéines ribosomiques. À l’aide de la ribomique et par d’autres techniques, nous avons mis en évidence une diminution de la biogenèse du ribosome après le stade érythroblaste basophile. Nous avons également montré que cette biogenèse du ribosome est en partie sous le contrôle de la voie mTORC1 régulée par les deux cytokines fondamentales de l’érythropoïèse : le Stem Cell Factor (SCF) et l’érythropoïétine (EPO). L’expression par l’érythroblaste des récepteurs des deux cytokines permet une biogenèse du ribosome optimale. L’inhibition de la biogenèse du ribosome par le CX-5461, inhibiteur spécifique de l’ARN polymérase I, ou par la rapamycine, inhibiteur de mTORC1, entraîne une accélération de la différenciation érythroïde soulignant un rôle de la biogenèse du ribosome au cours de l’érythropoïèse. L’inhibition de la voie mTORC1 modifie l’ordre de clivage de l’ARNr, reflet d’une modification de sa maturation. Les expériences de ribomique dans les érythroblastes humains ont également permis de mettre en évidence la présence de paralogues de RP et la sous-représentation de certaines RPs au sein des ribosomes suggérant une hétérogénéité des ribosomes dans les érythroblastes humains. Parallèlement, un modèle mimant le syndrome 5q- a été développé par une approche shRPS14 dans une lignée humaine érythroleucémique dépendante de l’EPO. L’inhibition de RPS14 entraîne un défaut de biogenèse de la sous-unité 40S du ribosome aboutissant à une diminution des ribosomes entiers formés et une diminution de la traduction globale. Cependant une traduction est maintenue. Le défaut de biogenèse de la sous-unité 40S entraîne une augmentation de la quantité de c-KIT, récepteur du SCF et une diminution de la quantité de GATA1, facteur de transcription spécifique de l’érythropoïèse. Nous avons mis en évidence que la diminution de GATA1 est due à une diminution de sa traduction tandis que la traduction d’autres protéines est conservée dans ce contexte d’altération de la biogenèse du ribosome. Nous avons ensuite réalisé une analyse des transcrits présents dans les fractions polysomales correspondants à la traduction la plus efficace. Nous avons montré grâce à ce traductome que les propriétés thermodynamiques des parties 5’ et 3’UTR des ARNm modulent leur traduction dans le contexte d’inhibition de RPS14. Ces données suggèrent que l’altération de la biogenèse du ribosome peut aboutir à une modification du programme traductionnel. Ce travail montre que la biogenèse du ribosome diminue au cours de l’érythropoïèse et participe à la différenciation érythroïde. La voie mTORC1 participe au contrôle de cette biogenèse. / Ribosome biogenesis is a key event allowing cell growth before division. Defective RB recognized in ribosomopathyinherited Diamond-Blackfan anemia and 5q- syndrom. In this study, we aimed at investigating the regulatory role of RB during the erythroid precursor maturation which is characterized by a cell size reduction during 2 to 3 rapid cell divisions. We used two in vitro systemsé of expansion and differentiation of erythroblasts (E.) derived of immature hematopoietic progenitors from human mobilized peripheral blood or mouse fetal liver. The expansion step is supported by the Stem Cell Factor (SCF) and the second step depends on erythropoietin (EPO). The structure of the nucleolus was studied by electron microscopy. Compared to immature proerythroblasts (proE), a dramatic size reduction and change in nucleolar structure (ie. the disappearance of fibrillar and dense fibrillar components) is observed at the stage of mature polychromatophilic E. suggesting a loss of functionality. RB was measured by a pulsed SILAC (Stable Isotopic Labeling by Amino acids in Culture cell) proteomic assay that quantified the incorporation of newly synthesized ribosomal proteins in the ribosome. Both in mouse and human models, immature proE expanded upon SCF and EPO demonstrate a maximal RB with a renewal rate of 60% and 50% every 14h and 24h, respectively. By contrast, RB rapidly interrupted with the disappearance of proE and basophilic E after the switch to EPO alone. Consistently, the quantities of ribosomal RNA (rRNA) 45S precursor estimated by qPCR are maximal in proE and almost null in orthochromatophilic E. Inhibition of RB at proE stage by RNApol I specific inhibitor (CX-5461) accelerates the onset of terminal erythroid differentiation suggesting that RB is a rate limiting factor for final maturation. We then hypothesize that degree of signaling intensity in response to SCF and EPO may control the level of RB. To address this question, we investigated the mTORC1 (mechanistic Target Of Rapamycin Complex 1) pathway which is directly involved in RB through its substrate p70S6Kinase. Activation of P-p70S6Kinase and P-Rps6, as well as ribosome renewal, are twice more elevated in response to SCF and EPO than to EPO alone. Furthermore, inhibition of mTORC1/p70S6K/Rps6 pathway by rapamycin disrupts RB and leads to an acceleration of terminal erythroid differentiation.This study demonstrates that the collapse of RB promotes erythroid cell terminal maturation and shows the regulatory role of mTORC1 pathway on RB during erythropoiesis.
Identifer | oai:union.ndltd.org:theses.fr/2016USPCB251 |
Date | 22 November 2016 |
Creators | Raimbault, Anna |
Contributors | Sorbonne Paris Cité, Fontenay, Michaëla |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds