Return to search

Géométrie énumérative des courbes ayant des plans sécants exceptionnels

On étudie des courbes munie de séries linéaires qui sont exceptionnelles vis-à-vis leurs plans sécants. En travaillant dans le cadre d'une extension de la théorie de Brill--Noether aux paires de séries linéaires, on démontre qu'une courbe générale de genre g n'a aucune plan sécant exceptionnel. On traite aussi le calcul du nombre de séries linéaires ayant des plans sécants exceptionnels dans une famille à une paramètre en termes de classes tautologiques associées à la famille. On formule une conjecture sur les fonctions génératrices des coefficients tautologiques des formules multisécantes correspondantes dans le cas de séries $g^{2d-1}_m$ admettant des $(d-2)$-plans $d$-sécants, avec $d$ variable. On décrit aussi une stratégie pour calculer les classes de diviseurs sécant-exceptionnels dans le groupe de Picard de l'espace des modules des courbes pour deux familles d'exemples naturelles, et on obtient une formule pour le nombre de séries linéaires ayant des plans sécants exceptionnels sur une courbe générale munie d'une famille 1-dimensionnelle de séries linéaires.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00466017
Date27 April 2007
CreatorsCotterill, Ethan
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0018 seconds