Dans cette thèse, nous considérons les chemins possibles pour donner une mesure quantitative du fait que deux espaces ne sont pas quasi-isométriques. De ce point de vue quantitatif, on reprend la définition de quasi-isométrie et on propose une notion de “croissance de distorsion quasi-isométrique” entre deux espaces métriques. Nous révisons notre article [32] où une borne supérieure optimale pour le lemme de Morse est donnée, avec la variante duale que nous appelons Anti-Morse Lemma, et leurs applications.Ensuite, nous nous concentrons sur des bornes inférieures sur la croissance de distorsion quasi-isométrique pour des espaces métriques hyperboliques. Dans cette classe, les espaces de $L^p$-cohomologie fournissent des invariants de quasi-isométrie utiles et les constantes de Poincaré des boules sont leur incarnation quantitative. Nous étudions comment les constantes de Poincaré sont transportées par quasi-isométries. Dans ce but, nous introduisons la notion de transnoyau. Nous calculons les constantes de Poincaré pour les métriques localement homogènes de la forme $dt^2+\sum_ie^{2\mu_it}dx_i^2$, et donnons une borne inférieure sur la croissance de distorsion quasi-isométrique entre ces espaces.Cela nous permet de donner des exemples présentant différents type de croissance de distorsion quasi-isométrique, y compris un exemple sous-linéaire (logarithmique). / In this thesis we discuss possible ways to give quantitative measurement for two spaces not being quasi-isometric. From this quantitative point of view, we reconsider the definition of quasi-isometries and propose a notion of ``quasi-isometric distortion growth'' between two metric spaces. We revise our article [32] where an optimal upper-bound for Morse Lemma is given, together with the dual variant which we call Anti-Morse Lemma, and their applications.Next, we focus on lower bounds on quasi-isometric distortion growth for hyperbolic metric spaces. In this class, $L^p$-cohomology spaces provides useful quasi-isometry invariants and Poincar\'e constants of balls are their quantitative incarnation. We study how Poincar\'e constants are transported by quasi-isometries. For this, we introduce the notion of a cross-kernel. We calculate Poincar\'e constants for locally homogeneous metrics of the form $dt^2+\sum_ie^dx_i^2$, and give a lower bound on quasi-isometric distortion growth among such spaces.This allows us to give examples of different quasi-isometric distortion growths, including a sublinear one (logarithmic).
Identifer | oai:union.ndltd.org:theses.fr/2013PA112126 |
Date | 08 July 2013 |
Creators | Shchur, Vladimir |
Contributors | Paris 11, Pansu, Pierre |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image |
Page generated in 0.0027 seconds