• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quasi-isometries between hyperbolic metric spaces, quantitative aspects

Shchur, Vladimir 08 July 2013 (has links) (PDF)
In this thesis we discuss possible ways to give quantitative measurement for two spaces not being quasi-isometric. From this quantitative point of view, we reconsider the definition of quasi-isometries and propose a notion of ''quasi-isometric distortion growth'' between two metric spaces. We revise our article [32] where an optimal upper-bound for Morse Lemma is given, together with the dual variant which we call Anti-Morse Lemma, and their applications.Next, we focus on lower bounds on quasi-isometric distortion growth for hyperbolic metric spaces. In this class, $L^p$-cohomology spaces provides useful quasi-isometry invariants and Poincaré constants of balls are their quantitative incarnation. We study how Poincaré constants are transported by quasi-isometries. For this, we introduce the notion of a cross-kernel. We calculate Poincaré constants for locally homogeneous metrics of the form $dt^2+\sum_ie^{2\mu_it}dx_i^2$, and give a lower bound on quasi-isometric distortion growth among such spaces.This allows us to give examples of different quasi-isometric distortion growths, including a sublinear one (logarithmic).
2

Quasi-isometries between hyperbolic metric spaces, quantitative aspects / Quasi-isométries entre espaces métriques hyperboliques, aspects quantitatifs

Shchur, Vladimir 08 July 2013 (has links)
Dans cette thèse, nous considérons les chemins possibles pour donner une mesure quantitative du fait que deux espaces ne sont pas quasi-isométriques. De ce point de vue quantitatif, on reprend la définition de quasi-isométrie et on propose une notion de “croissance de distorsion quasi-isométrique” entre deux espaces métriques. Nous révisons notre article [32] où une borne supérieure optimale pour le lemme de Morse est donnée, avec la variante duale que nous appelons Anti-Morse Lemma, et leurs applications.Ensuite, nous nous concentrons sur des bornes inférieures sur la croissance de distorsion quasi-isométrique pour des espaces métriques hyperboliques. Dans cette classe, les espaces de $L^p$-cohomologie fournissent des invariants de quasi-isométrie utiles et les constantes de Poincaré des boules sont leur incarnation quantitative. Nous étudions comment les constantes de Poincaré sont transportées par quasi-isométries. Dans ce but, nous introduisons la notion de transnoyau. Nous calculons les constantes de Poincaré pour les métriques localement homogènes de la forme $dt^2+\sum_ie^{2\mu_it}dx_i^2$, et donnons une borne inférieure sur la croissance de distorsion quasi-isométrique entre ces espaces.Cela nous permet de donner des exemples présentant différents type de croissance de distorsion quasi-isométrique, y compris un exemple sous-linéaire (logarithmique). / In this thesis we discuss possible ways to give quantitative measurement for two spaces not being quasi-isometric. From this quantitative point of view, we reconsider the definition of quasi-isometries and propose a notion of ``quasi-isometric distortion growth'' between two metric spaces. We revise our article [32] where an optimal upper-bound for Morse Lemma is given, together with the dual variant which we call Anti-Morse Lemma, and their applications.Next, we focus on lower bounds on quasi-isometric distortion growth for hyperbolic metric spaces. In this class, $L^p$-cohomology spaces provides useful quasi-isometry invariants and Poincar\'e constants of balls are their quantitative incarnation. We study how Poincar\'e constants are transported by quasi-isometries. For this, we introduce the notion of a cross-kernel. We calculate Poincar\'e constants for locally homogeneous metrics of the form $dt^2+\sum_ie^dx_i^2$, and give a lower bound on quasi-isometric distortion growth among such spaces.This allows us to give examples of different quasi-isometric distortion growths, including a sublinear one (logarithmic).
3

On Uniform and integrable measure equivalence between discrete groups / Sur l'équivalence mesurée uniforme et intégrable entre groupes discrets

Das, Kajal 19 October 2016 (has links)
Ma thèse se situe à l'intersection de \textit {la théorie des groupes géométrique} et \textit{la théorie des groupes mesurée}. Une question majeure dans la théorie des groupes géométrique est d'étudier la classe de quasi-isométrie (QI) et la classe d'équivalence mesurée (ME) d'un groupe, respectivement. $L^p$-équivalence mesurée est une relation d'équivalence qui est définie en ajoutant des contraintes géométriques avec d'équivalence mesurée. En plus, QI est une condition géométrique. Il est une question naturelle, si deux groupes sont QI et ME, si elles sont $L^p$-ME pour certains $p>0$. Dans mon premier article, en collaboration avec R. Tessera, nous répondons négativement à cette question pour $p\geq 1$, montrant que l'extension centrale canonique d'un groupe surface de genre plus élevé ne sont pas $L^1$-ME pour le produit direct de ce groupe de surface avec $\mathbb{Z}$ (alors qu'ils sont à la fois quasi-isométrique et équivalente mesurée).Dans mon deuxième papier, j'ai observé un lien général entre la géométrie des expandeurs, defini comme une séquence des quotients finis ( l'espace de boîte) d'un groupe finiment engendré, et les propriétés mesurée theorique du groupe. Plus précisément, je l'ai prouvé que si deux <<espaces de boîte>> sont quasi-isométrique, les groupes correspondants doivent être <<mesurée équivalente uniformément >>, une notion qui combine à la fois QI et ME. Je prouve aussi une version de ce résultat pour le plongement grossière, ce qui permet de distinguer plusieurs classe des expandeurs. Par exemple, je montre que les expandeurs associé à $SL(m, \mathbb{Z})$ ne grossièrement plongent à les expandeurs associés à $SL_n(\mathbb{Z})$ si $m>n$. / My thesis lies at the intersection of \textit{geometric group theory} and \textit{measured group theory}. A major question in geometric group theory is to study the quasi-isometry (QI) class and the measure equivalence (ME) class of a group, respectively. $L^p$-measure equivalence is an equivalence relation which is defined by adding some geometric constraints with measure equivalence. Besides, quasi-isometry is a geometric condition. It is a natural question if two groups are QI and ME, whether they are $L^p$-ME for some $p>0$. In my first paper, together with R. Tessera, we answer this question negatively for $p\geq 1$, showing that the canonical central extension of a surface group of higher genus is not $L^1$-ME to the direct product of this surface group with $\mathbb{Z}$ (while they are both quasi-isometric and measure equivalent). In my second paper, I observed a general link between the geometry of expanders arising as a sequence of finite quotients (box space) of a finitely generated group, and the measured theoretic properties of the group. More precisely, I proved that if two box spaces' are quasi-isometric, then the corresponding groups must be `uniformly measure equivalent', a notion that combines both quasi-isometry and measure equivalence. I also prove a version of this result for coarse embedding, allowing to distinguish many classes of expanders. For instance, I show that the expanders associated to $SL(m,\mathbb{Z})$ do not coarsely embed inside the expanders associated to $SL_n(\mathbb{Z}$ if $m>n$.
4

Rough Isometries of Order Lattices and Groups / Grobe Isometrien von Ordnungsverbänden und Gruppen

Lochmann, Andreas 06 August 2009 (has links)
No description available.

Page generated in 0.0707 seconds