• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sobolev-Type Spaces : Properties of Newtonian Functions Based on Quasi-Banach Function Lattices in Metric Spaces

Malý, Lukáš January 2014 (has links)
This thesis consists of four papers and focuses on function spaces related to first-order analysis in abstract metric measure spaces. The classical (i.e., Sobolev) theory in Euclidean spaces makes use of summability of distributional gradients, whose definition depends on the linear structure of Rn. In metric spaces, we can replace the distributional gradients by (weak) upper gradients that control the functions’ behavior along (almost) all rectifiable curves, which gives rise to the so-called Newtonian spaces. The summability condition, considered in the thesis, is expressed using a general Banach function lattice quasi-norm and so an extensive framework is built. Sobolev-type spaces (mainly based on the Lp norm) on metric spaces, and Newtonian spaces in particular, have been under intensive study since the mid-1990s. In Paper I, the elementary theory of Newtonian spaces based on quasi-Banach function lattices is built up. Standard tools such as moduli of curve families and the Sobolev capacity are developed and applied to study the basic properties of Newtonian functions. Summability of a (weak) upper gradient of a function is shown to guarantee the function’s absolute continuity on almost all curves. Moreover, Newtonian spaces are proven complete in this general setting. Paper II investigates the set of all weak upper gradients of a Newtonian function. In particular, existence of minimal weak upper gradients is established. Validity of Lebesgue’s differentiation theorem for the underlying metric measure space ensures that a family of representation formulae for minimal weak upper gradients can be found. Furthermore, the connection between pointwise and norm convergence of a sequence of Newtonian functions is studied. Smooth functions are frequently used as an approximation of Sobolev functions in analysis of partial differential equations. In fact, Lipschitz continuity, which is (unlike <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Cmathcal%7BC%7D%5E1" />-smoothness) well-defined even for functions on metric spaces, often suffices as a regularity condition. Thus, Paper III concentrates on the question when Lipschitz functions provide good approximations of Newtonian functions. As shown in the paper, it suffices that the function lattice quasi-norm is absolutely continuous and a fractional sharp maximal operator satisfies a weak norm estimate, which it does, e.g., in doubling Poincaré spaces if a non-centered maximal operator of Hardy–Littlewood type is locally weakly bounded. Therefore, such a local weak boundedness on rearrangement-invariant spaces is explored as well. Finer qualitative properties of Newtonian functions and the Sobolev capacity get into focus in Paper IV. Under certain hypotheses, Newtonian functions are proven to be quasi-continuous, which yields that the capacity is an outer capacity. Various sufficient conditions for local boundedness and continuity of Newtonian functions are established. Finally, quasi-continuity is applied to discuss density of locally Lipschitz functions in Newtonian spaces on open subsets of doubling Poincaré spaces.
2

Aplicaciones separadoras sobre espacios de funciones. Representación y continuidad automática

Dubarbie Fernández, Luis 01 October 2010 (has links)
Esta Tesis se enmarca dentro del estudio de las aplicaciones lineales entre subespacios de funciones continuas definidas en espacios métricos y que toman valores en espacios normados. En concreto, el Capítulo 1 está dedicado al estudio de las aplicaciones separadoras entre espacios de funciones absolutamente continuas. En el Capítulo 2 consideramos aplicaciones biseparadoras definidas entre espacios de funciones de Lipschitz. Por otro lado, las isometrías entre espacios de funciones de Lipschitz se estudian en el Capítulo 3 y, finalmente, analizaremos las aplicaciones que preservan ceros comunes entre ciertos subespacios de funciones continuas que incluyen, entre otros, los mencionados anteriormente.Así, nuestro objetivo es proporcionar algunos resultados acerca de la representación de las aplicaciones lineales consideradas. Además, observamos que la continuidad de las aplicaciones biseparadoras y de las que preservan ceros comunes se puede deducir de manera automática bajo ciertas condiciones. / In this Thesis we deal with linear maps between subspaces of continuous functions defined on metric spaces and taking values in normed spaces. In particular, the Chapter 1 is devoted to study separating maps between spaces of absolutely continuous functions. In Chapter 2 we consider biseparating maps between Lipschitz function spaces. On the other hand, the isometries between spaces of Lipschitz functions are studied in Chapter 3 and, finally, we consider maps preserving common zeros between some subspaces of continuous functions, which include the subspaces given above.Therefore, our aim is providing some results about the representation of each linear map that we consider in this Thesis. Besides, the automatic continuity of biseparating maps and maps preserving common zeros is derived in some cases.
3

Rough Isometries of Order Lattices and Groups / Grobe Isometrien von Ordnungsverbänden und Gruppen

Lochmann, Andreas 06 August 2009 (has links)
No description available.

Page generated in 0.0584 seconds