• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Kompaktnost Sobolevových vnoření vyššího řádu / Compactness of higher-order Sobolev embeddings

Slavíková, Lenka January 2012 (has links)
The present work deals with m-th order compact Sobolev embeddings on a do- main Ω ⊆ Rn endowed with a probability measure ν and satisfying certain isoperi- metric inequality. We derive a condition on a pair of rearrangement-invariant spaces X(Ω, ν) and Y (Ω, ν) which suffices to guarantee a compact embedding of the Sobolev space V m X(Ω, ν) into Y (Ω, ν). The condition is given in terms of compactness of certain operator on representation spaces. This result is then applied to characterize higher-order compact Sobolev embeddings on concrete measure spaces, including John domains, Maz'ya classes of Euclidean domains and product probability spaces, among them the Gauss space is the most stan- dard example. 1
2

Sobolev-Type Spaces : Properties of Newtonian Functions Based on Quasi-Banach Function Lattices in Metric Spaces

Malý, Lukáš January 2014 (has links)
This thesis consists of four papers and focuses on function spaces related to first-order analysis in abstract metric measure spaces. The classical (i.e., Sobolev) theory in Euclidean spaces makes use of summability of distributional gradients, whose definition depends on the linear structure of Rn. In metric spaces, we can replace the distributional gradients by (weak) upper gradients that control the functions’ behavior along (almost) all rectifiable curves, which gives rise to the so-called Newtonian spaces. The summability condition, considered in the thesis, is expressed using a general Banach function lattice quasi-norm and so an extensive framework is built. Sobolev-type spaces (mainly based on the Lp norm) on metric spaces, and Newtonian spaces in particular, have been under intensive study since the mid-1990s. In Paper I, the elementary theory of Newtonian spaces based on quasi-Banach function lattices is built up. Standard tools such as moduli of curve families and the Sobolev capacity are developed and applied to study the basic properties of Newtonian functions. Summability of a (weak) upper gradient of a function is shown to guarantee the function’s absolute continuity on almost all curves. Moreover, Newtonian spaces are proven complete in this general setting. Paper II investigates the set of all weak upper gradients of a Newtonian function. In particular, existence of minimal weak upper gradients is established. Validity of Lebesgue’s differentiation theorem for the underlying metric measure space ensures that a family of representation formulae for minimal weak upper gradients can be found. Furthermore, the connection between pointwise and norm convergence of a sequence of Newtonian functions is studied. Smooth functions are frequently used as an approximation of Sobolev functions in analysis of partial differential equations. In fact, Lipschitz continuity, which is (unlike <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Cmathcal%7BC%7D%5E1" />-smoothness) well-defined even for functions on metric spaces, often suffices as a regularity condition. Thus, Paper III concentrates on the question when Lipschitz functions provide good approximations of Newtonian functions. As shown in the paper, it suffices that the function lattice quasi-norm is absolutely continuous and a fractional sharp maximal operator satisfies a weak norm estimate, which it does, e.g., in doubling Poincaré spaces if a non-centered maximal operator of Hardy–Littlewood type is locally weakly bounded. Therefore, such a local weak boundedness on rearrangement-invariant spaces is explored as well. Finer qualitative properties of Newtonian functions and the Sobolev capacity get into focus in Paper IV. Under certain hypotheses, Newtonian functions are proven to be quasi-continuous, which yields that the capacity is an outer capacity. Various sufficient conditions for local boundedness and continuity of Newtonian functions are established. Finally, quasi-continuity is applied to discuss density of locally Lipschitz functions in Newtonian spaces on open subsets of doubling Poincaré spaces.
3

Poloha Orliczova prostoru a optimalita / Positioning of Orlicz space and optimality

Musil, Vít January 2014 (has links)
Given a rearrangement-invariant Banach function space Y (Ω), we consider the problem of the existence of an optimal (largest) domain Or- licz space LA (Ω) satisfying the Sobolev embedding Wm LA (Ω) !Y (Ω). We present a complete solution of this problem within the class of Marcinkiewicz endpoint spaces which covers several important examples.

Page generated in 0.116 seconds