The ESSnuSB will produce a high intensity neutrino super beam based on the 3 ms long proton pulses at 14 Hz from the ESS linac. With the use of a conventional normal-conducting van der Meer horn, to collect pions from the neutrino target, these 3 ms pulses will have to be compressed to of the order of 1 microsecond in order to avoid overheating of the magnet current conductors. Since this pulse compression requires costly extensions to the accelerator complex a prototype design of an alternative normal-conducting hadron collector scheme that could be operated in DC mode has been studied. The magnet has been implemented in the simulation software FLUKA and extensive research has been made to analyse and maximise the flux of charged pions inside and downsteam of the magnet. Further simulations have been made to asses the flux of on-target neutrinos from the alternative collector scheme in comparison to the corresponding flux of a van der Meer horn. Simulation results from the comparison show that the alternative magnet greatly improved the neutrino flux of a bare source but not to the extent necessary to replace the magnetic horn. A conclusion is presented on the future possibilities of an optimized design that can improve the neutrino flux.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-379699 |
Date | January 2019 |
Creators | Simion, Patrik |
Publisher | Uppsala universitet, FREIA |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | UPTEC F, 1401-5757 ; 19004 |
Page generated in 0.0024 seconds