Cette thèse comporte quatre parties. Les deux premières parties concernent le calcul de la première valeur propre de familles d'opérateurs de Neumann en utilisant d'abord une méthode basée sur les différences finies, puis une approximation par une méthode d'éléments finis sans quadrature numérique. Pour le calcul numérique de la plus petite valeur propre, la méthode de la puissance inverse a été implémentée avec factorisation LU de la matrice considérée pour la résolution des systèmes linéaires utilisés.<br />La troisième partie porte sur un problème de valeurs propres faisant intervenir un opérateur de Schrödinger avec champ magnétique constant issu de la théorie de Ginzburg-Landau et concernant la supraconductivité de certains matériaux. Pour la résolution numérique, une méthode basée sur les éléments finis avec intégration numérique est utilisée. Dans cette partie, une évaluation de la partie basse du spectre de la réalisation de Neumann est obtenue. Ensuite, l'existence des solutions du problème variationnel spectral a été établie. L'étude de la convergence et l'estimation des erreurs pour les paires propres approchées avec quadrature numérique dans le cas où les fonctions propres sont vectorielles, sont semblables à celles obtenues dans le cas où les fonctions propres sont réelles. Dans l'étude de ces estimations, la distinction est faite entre le cas d'une valeur propre exacte simple et le cas d'une valeur propre exacte multiple. La quatrième partie porte sur la mise en œuvre de la résolution numérique du problème précédent.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00011254 |
Date | 27 October 2005 |
Creators | Janane, Rahhal |
Publisher | Université de Nantes |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0034 seconds