Neste trabalho fazemos um estudo do conceito de soma torcida de F-espaços. Apresentamos algumas propriedades e simplificações na construção de somas torcidas de F-espaços localmente limitados. Em particular, estudamos uma condição suficiente para que uma soma torcida de espaços de Banach seja um espaço de Banach. Finalmente aplicamos esses conceitos para definir o espaço construído por N. J. Kalton, que é um exemplo de um espaço de Banach não isomorfo ao conjugado complexo. Este espaço X de Kalton corresponde a uma soma torcida de espaços de Hilbert, isto é, X possui um subespaço fechado E tal que E e X/E são isomorfos a espaços de Hilbert. / In this work we study the concept of twisted sum of F-spaces. We also study some properties and simplifications in the construction of twisted sums of locally bounded F-spaces. In particular, we study a sufficient condition for a twisted sum of Banach spaces to be a Banach space. Finally we apply these concepts to define the space constructed by N. J. Kalton, which is an example of a Banach space not isomorphic to its complex conjugate. The Kalton space X is a twisted sum of Hilbert spaces, i.e. X has a closed subspace E such that E and X/E are isomorphic to Hilbert spaces.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-25122017-132925 |
Date | 25 February 2011 |
Creators | Wilson Albeiro Cuellar Carrera |
Contributors | Valentin Raphael Henri Ferenczi, Jorge Tulio Mujica Ascui, Eloi Medina Galego |
Publisher | Universidade de São Paulo, Matemática, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0097 seconds