<p>This thesis makes a survey of converse theorems for Dirichlet series. A converse theo-rem gives sufficient conditions for a Dirichlet series to be the Dirichlet series attachedto a modular form. Such Dirichlet series have special properties, such as a functionalequation and an Euler product. Sometimes these properties characterize the modularform completely, i.e. they are sufficient to prove the proper transformation behaviourunder some discrete group. The problem dates back to Hecke and Weil, and has morerecently been treated by Conrey et.al. The articles surveyed are:</p><ul><li>"An extension of Hecke's converse theorem", by B. Conrey and D. Farmer</li><li>"Converse theorems assuming a partial Euler product", by D. Farmer and K.Wilson</li><li>"A converse theorem for ¡0(13)", by B. Conrey, D. Farmer, B. Odgers and N.Snaith</li></ul><p>The results and the proofs are described. The second article is found to contain anerror. Finally an alternative proof strategy is proposed.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-19446 |
Date | January 2009 |
Creators | Karlsson, Jonas |
Publisher | Linköping University, Applied Mathematics |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, text |
Page generated in 0.0024 seconds