The present study intended to examine the neural basis of audiovisual integration, hypothetically achieved by synchronized gamma-band oscillations (30--80 Hz) that have been suggested to integrate stimulus features and top--down information. To that end, we studied the impact of visual symbolic information on early auditory sensory processing of upcoming sounds. In particular, we used a symbol-to-sound--matching paradigm in which simple score-like patterns predict corresponding sound patterns. Occasionally, a single sound is incongruent with the corresponding element of the visual pattern. In response to expected sounds congruent with the corresponding visual symbol, a power increase of phase-locked (evoked) activity in the 40-Hz band was observed peaking 42-ms poststimulus onset. Thus, for the first time, we demonstrated that the comparison process between a neural model, the expectation, and the current sensory input is implemented at very early levels of auditory processing. Subsequently, expected congruent sounds elicited a broadband power increase of non--phase-locked (induced)activity peaking 152-ms poststimulus onset, which might reflect the formation of a unitary event representation including both visual and auditory aspects of the stimulation. Gamma-band responses were not present for unexpected incongruent sounds. A model explaining the anticipatory activation of cortical auditory representations and the match of experience against expectation is presented
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:32714 |
Date | 16 January 2019 |
Creators | Widmann, Andreas, Gruber, Thomas, Kujala, Teija, Tervaniemi, Mari, Schröger, Erich |
Publisher | Oxford University Press |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/acceptedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0025 seconds