This thesis describes the architecture of an adaptive goal-oriented AI system that can be used for Real-Time Strategy games. The system is at the end tested against a single opponent on three different maps with different sizes to test the ability of the AI opposed to the 'standard' Finite State Machines and the likes in Real-Time Strategy games. The system consists of a task handler agent that manages all the active and halted tasks. A task is either low-level; used for ordering units, or high-level that can form advanced strategies. The General forms plans that are most beneficial at the moment. For creating effective units against the opponent a priority system is used; where the unit priorities are calculated dynamically. / Den här uppsatsen beskriver en adaptiv målorienterad AI-arkitektur som kan tillämpas på "Real-Time Strategy" spel. Systemet testat mot en annan AI som använder mer traditionella "Finite State Machines" in sin arkitekture. Testet utförs på tre olika banor som är olika stora. Systemet består utav en "Uppgiftshanterare" som har hand om alla aktiva och inaktiva uppgifter. En uppgift kan antingen vara utav låg-nivå, som används för att skicka kommandon till enheterna, eller utav hög-nivå för att göra mer avancerade strategier. Generalen planerar och skapar uppgifter som är mest fördelaktig för tillfället. För att skapa enheter som är effektiva mot fiendens enheter används ett prioritetssystem, där enhetens prioritet kalkyleras ut dynamiskt under spelets gång.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:bth-4361 |
Date | January 2010 |
Creators | Magnusson, Matteus, Hall, Tobias |
Publisher | Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds