Return to search

Gait Changes During Exhaustive Running

Runners adopt altered gait patterns as they fatigue which may increase energy expenditure and susceptibility to certain overuse injuries. Previous investigations have described changes in muscle performance and kinematic gait variables resulting from running fatigue. The purpose of this investigation was to characterize changes in joint moment patterns that develop as runners fatigue in order to better understand the kinetic bases for kinematic fatigue effects. It was hypothesized that when fatigued, runners would demonstrate increases in stance time, peak stance phase knee flexion angle, peak knee extension moment, peak swing phase hip flexion moment, and hip extension and plantarflexion angular impulse generated during stance. Eight recreational rearfoot-striking runners (height = 170.0 ± 9.8 cm; mass = 69.6 ± 15.1 kg) ran on a force-instrumented treadmill at a velocity 5% slower than that of lactate threshold until volitional exhaustion. Force and motion data were collected each minute and analyzed at six evenly-spaced time points over the run duration. Of the six hypotheses, only stance time changed significantly (p = 0.004), increasing in a linear manner over the course of the run (r2 = 0.946). Of the remaining hypotheses, peak knee flexion (r2 = 0.899) and hip extension angular impulse (r2 = 0.608) followed increasing trends over the course of the run. Individual participants often demonstrated joint moment trends consistent with fatigue effects reported in the literature, despite inconclusive group results. High variability in individual responses underscores the complexity of gait adaptations used by distance runners as they fatigue.

Identiferoai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:masters_theses_2-1328
Date23 March 2016
CreatorsSmith, Nathaniel I
PublisherScholarWorks@UMass Amherst
Source SetsUniversity of Massachusetts, Amherst
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses

Page generated in 0.0047 seconds