A key factor regarding fire safety of timber buildings is the performance of connections between the structural elements, since this determines the load-carrying capacity of the structure. Traditional timber connections do generally perform poorly in a fire compared to surrounding parts since the joints often consist of exposed metal parts and cavities which locally decreases the fire resistance. This weakness does often lead to the appliance of gypsum which removes the aesthetic appearance of timber. Through an innovative timber connection design, the hope is that the failings at elevated temperature are changed from the connection itself to surrounding parts thus increasing the fire resistance to the limits of the connected components. Two types of glue-laminated timber connections have been built and tested at RISE facilities in Borås with the purpose to determine if these could withstand fire exposure for 90 minutes under load. The connections are assembled by expanding hollow steel tubes that clinches the members together and at the same time makes the steel tube yield against the inside of the pre-drilled hole. Pre-stresses are created in the connection during this process that avoids an initial slip if the connection is loaded, which is one of the reasons that this type of connections is suitable in earthquake-prone areas. The joint design results in a significantly increased rotational stiffness, moment capacity and embedded energy of the joint in comparison with conventional timber connections. One of the connections is designed to withstand moment forces. The specimen is built as a beam to beam connection that is subjected to a four-point bending test at both ambient and elevated temperature. The connection withstood 39.5 kNm in ambient temperature and failed after 87 minutes and 6 seconds of fire exposure under load. However, failure in elevated temperature did not occur within the connection, and visual inspection after the test indicated that the steel tubes still were in excellent condition. The connection is therefore expected to have been able to withstand 90 minutes of fire exposure. The other connection is designed to withstand shear-forces and is built as a column to beam connection that is tested at both room temperature and elevated temperature. The connection endured a maximum shear-force of 181.4 kN in ambient temperature, approximately 30 kN higher than previously performed test with identical setup, and failed after 113 minutes of fire exposure under load. The failure in elevated temperature did however not occur inside the connection. The testing is limited to unprotected connections consisting of glue-laminated timber which are tested in accordance with ISO 834. / En nyckelfaktor för brandsäkerheten i träbyggnader är prestandan hos förbanden mellan konstruktionselementen eftersom dessa bestämmer konstruktionens lastbärande kapacitet. Traditionella träförband har i allmänhet dåligt brandmotstånd i förhållande till omgivande delar, detta eftersom förbanden ofta består av exponerade metalldelar och kaviteter som lokalt försvagar brandmotståndet. Dessa svagheter motverkas ofta genom att montera gips vilket negativt påverkar träets estetiska utseende. Genom en innovativ konstruktion av träförband är hoppet att den svaga punkten vid förhöjd temperatur flyttas från själva anslutningen till omgivande delar, vilket ökar konstruktionens brandmotstånd genom att brandmotståndet då begränsas av prestandan hos de anslutna komponenterna. Två typer av limträförband har byggts och testats vid RISE-anläggningen i Borås med syfte att bestämma om dessa under belastning skulle kunna stå emot brandexponering under 90 minuter. Förbanden monteras genom att expandera ihåliga stålrör som klämmer samman elementen och samtidigt deformeras mot insidan av det förborrade hålet. Förspänningar skapas i förbandet under denna process som förhindrar en primär förskjutning om förbandet är lastat, vilket är en av anledningarna till att denna typ av anslutningar är lämpliga i jordbävningsbenägna områden. Denna konstruktion resulterar i en betydligt ökad rotationsstyvhet, momentkapacitet och inbäddad energi i jämförelse med konventionella träförband. En av anslutningarna är konstruerad för att motstå momentkrafter. Provkroppen är byggd som en balk-balkanslutning som utsätts för ett fyrapunkts böjningstest vid både rumstemperatur och förhöjd temperatur. Anslutningen klarade 39.5 kNm vid rumstemperatur och fallerade efter 87 minuter och 6 sekunder av belastning i förhöjda temperaturer. Brottet i förhöjd temperatur inträffade emellertid inte i anslutningen och den visuella inspektionen som utfördes efter testet indikerade att stålrören fortfarande var i utmärkt skick. Anslutningen bedöms därför ha kunnat motstå 90 minuters brandexponering. Det andra förbandet är konstruerat för att motstå tvärkrafter och är byggt som en pelare-balkanslutning som testas vid både rumstemperatur och förhöjd temperatur. Anslutningen klarade en maximal skjuvkraft på 181.4 kN vid rumstemperatur, cirka 30 kN högre än tidigare utfört test med identisk uppställning, och fallerade efter 113 minuters belastning i förhöjd temperatur. Brottet i förhöjd temperatur inträffade emellertid inte i själva anslutningen. Testerna är begränsade till oskyddade förband bestående av limträ som under brandpåverkan testas enligt ISO 834.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-70788 |
Date | January 2018 |
Creators | Ronstad, David, Ek, Niklas |
Publisher | Luleå tekniska universitet, Byggkonstruktion och brand |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0026 seconds