Spelling suggestions: "subject:"brandmotstånd"" "subject:"brandmotståndet""
1 |
Möjligheter att brandskydda korslimmat massivträ / Opportunities to protect cross-laminated timber against fireEriksson, Isabell, Ekström, Axel January 2014 (has links)
I den här kandidatuppsatsen har vi undersökt om korslimmat massivträs brandegenskaper kan förbättrats med rätt sorts lim och med användandet av skyddsskivor. Det senaste årtiondet har byggbranschen blivit mer miljömedvetna och viljan att bygga miljö- och klimatsmart har ökat, detta har medfört ett ökat användande av olika typer av trämaterial. Korslimmat massivträ har utvecklats som ett resultat av detta. Eftersom det är ett nytt byggnadsmaterial finns det mycket forskning kvar att göra, vilket intresserade oss. För att få svar på våra frågor har vi gjort en litteraturstudie för att inhämta kunskap och resultat från tidigare rapporter och artiklar som finns i ämnet. Det vi har kunnat se är att så länge som de individuella lagrena i det korslimmade massivträet inte lossnar ifrån varandra har det i princip samma brandegenskaper som homogent massivträ. Men så fort som det lossnar ifrån varandra stiger förkolningstakten och brandegenskaperna försämras. Det går att förhindra och begränsa dessa försämringar med rätt val av lim och skyddsskivor. Detta är fördjupningsdelen i ett arbete som också innefattar projektering och dimensionering av ett småhus.
|
2 |
Tillämpning av nya beräkningsmetoder för branddimensionering av träkonstruktioner - analyser och jämförelser / Application of new calculation methods for fire design of timber structures - analyses and comparisonsZetterlund, Katrin, Naruszewicz, Adam January 2010 (has links)
To build high-rise buildings made of timber has for long been limited by national laws, due to the lack of knowledge in engineering solutions. Frame structures made of wood has for a long time been associated with major fire hazards and consequently lower safety and this connection is still being made today. The increased environmental awareness in recent years has contributed to the exploitation of indigenous building materials, including wood from our own Swedish forests and has become increasingly common. Increased knowledge about how structures behave in fire and how they can be protected in order to achieve safe timber structures has resulted in a growing interest in these structures in the construction industry. Research in the area is constantly updated and new laws allow any number of storeys in wooden buildings in Sweden as long as the performance requirements are fulfilled. The main part of this work has involved calculations of the fire resistance and load bearing capacity of floor and wall constructions. The calculations are based on different models, both old and new. There are many alternative ways to handle the problems. The report presents three different approaches that have been generalized into three calculation methods. The names used here for the methods are the same as the two manuals: Brandsäkra trähus version 2 and Fire Safety In Timber Buildings, as well as the standard Eurocode 5, where a detailed description of the methods of calculation are introduced. This work has resulted in a number of updated tables in order to exemplify the fire resistance and load bearing capacity during fire for selected timber structures according to the latest calculation methods. In addition, values of bearing capacity for cross-laminated structures are included. The tables are grouped according to type of construction, namely, walls and floors. A selection of relevant structures of varying claddings can be found in the tables, including single gypsum plasterboard, double plasterboard and gypsum plasterboard with plywood behind that protect underlying wood studs. Tables of cross-laminated elements are presented separately. Cross laminated structures are composed of 3, 5 or 7 layers of timber and can be either unprotected or protected with a single gypsum board. The thickness of the load bearing and non-bearing layers has also been varied in different ways in order to investigate how the bearing capacity is affected. Finally obtained values are discussed and compared.
|
3 |
Brandkrav, branddimensionering och brandskydd för trätakstolar : Ur ett konstruktörsperspektivBernander, Frida, Lindhé, Kajsa January 2018 (has links)
This study contains a compilation and a clarification of the rules and requirements that can be applied to trusses and roof structures in consideration to fire. The different steps to decide the fire resistance of a truss or a roof construction is not that distinct and has to be combined with experience and subjective assessment. In case of fire the load combination for accidental load is used and in comparison with the ultimate limit state, the loads are reduced. Two different methods have been presented to determined the strength of construction timber, when exposed to fire. Both methods showed that construction timber, with a width of 45 mm, had a strength that correlate to a fire resistance of zero minutes. To improve the fire resistance of a roof construction different methods to protect the element has been presented. The most efficient ways to protect the construction is with gypsum boards and rockwool but for lower requirements wood covering can also be used. Fire retardant treatment (FTR) and fire protecting paint are also presented but are not applicable on wood trusses due to that FTR decreases the strength and fire protecting paint needs larger dimensions. In order to illustrate the different steps that are used when determining fire requirements of roof structures, two fictitious examples is presented.
|
4 |
Branddimensionering av anslutning i KL-trä med inslitsad plåt och dymlingarBengtsson, Sofie, Göransson, Felix January 2020 (has links)
Denna studie beskriver och analyserar de viktigare delarna kring branddimensionering för exponerat korslaminerat trä (utan beklädnad) med avseende på anslutningar med inslitsade plåtar och dymlingar. Det är dock brist på beräkningsmetoder för sådana anslutningar. Med fyra handböcker för limträ, kontra en för KL-trä, utgivna av Svenskt Trä finns det en hel del information om det materialet och dess anslutningar. Studien analyserar de två materialen för att undersöka om det finns möjlighet att nyttja forskning gällande beräkningar i limträ, för att därefter modifiera och applicera dem på KL-trä. Syftet med denna jämförelse vid brand av förband emellan grundas i att bredda kunskaperna inom området för KL-trä och eventuell kunna se intressanta samband. Målet för studien var att genom att identifiera dessa samband och tillföra nya aspekter relevant för KL- trä driva forskningen framåt. I studien gjordes en litteraturundersökning som visade att materialen har liknande egenskaper vid brand gällande brandens inledningsskede, förkolningsprocess, delaminering och de olika brott som kan ske under brand. Skjuvningsbrott i anslutningar med inslitsade plåtar och dymlingar anses vara det brott som bör dimensioneras för vid brand på grund av uppvärmda ståldelar och förkolning av träet. Därför samanställdes en beräkningsmetod för skjuvningsbrott i KL-trä med utgångspunkt i de befintliga beräkningarna för limträ enligt handboken Fire Safety in Timber Buildnigs - Technical Guideline for Europe. De två metoderna jämfördes och resultatet gav snarlika värden, vilket kan indikera på att utgångspunkten i limträ var rimlig men vidare studier krävs i form av undersökningar och eventuella brandtester. Andra typer av dolda anslutningar, t.ex sådana med självborrande skruvar, bör analyseras på liknande vis för att fastställa dess brandmotstånd.
|
5 |
Study of glue-laminated timber connections with high fire resistance using expanded steel tubesRonstad, David, Ek, Niklas January 2018 (has links)
A key factor regarding fire safety of timber buildings is the performance of connections between the structural elements, since this determines the load-carrying capacity of the structure. Traditional timber connections do generally perform poorly in a fire compared to surrounding parts since the joints often consist of exposed metal parts and cavities which locally decreases the fire resistance. This weakness does often lead to the appliance of gypsum which removes the aesthetic appearance of timber. Through an innovative timber connection design, the hope is that the failings at elevated temperature are changed from the connection itself to surrounding parts thus increasing the fire resistance to the limits of the connected components. Two types of glue-laminated timber connections have been built and tested at RISE facilities in Borås with the purpose to determine if these could withstand fire exposure for 90 minutes under load. The connections are assembled by expanding hollow steel tubes that clinches the members together and at the same time makes the steel tube yield against the inside of the pre-drilled hole. Pre-stresses are created in the connection during this process that avoids an initial slip if the connection is loaded, which is one of the reasons that this type of connections is suitable in earthquake-prone areas. The joint design results in a significantly increased rotational stiffness, moment capacity and embedded energy of the joint in comparison with conventional timber connections. One of the connections is designed to withstand moment forces. The specimen is built as a beam to beam connection that is subjected to a four-point bending test at both ambient and elevated temperature. The connection withstood 39.5 kNm in ambient temperature and failed after 87 minutes and 6 seconds of fire exposure under load. However, failure in elevated temperature did not occur within the connection, and visual inspection after the test indicated that the steel tubes still were in excellent condition. The connection is therefore expected to have been able to withstand 90 minutes of fire exposure. The other connection is designed to withstand shear-forces and is built as a column to beam connection that is tested at both room temperature and elevated temperature. The connection endured a maximum shear-force of 181.4 kN in ambient temperature, approximately 30 kN higher than previously performed test with identical setup, and failed after 113 minutes of fire exposure under load. The failure in elevated temperature did however not occur inside the connection. The testing is limited to unprotected connections consisting of glue-laminated timber which are tested in accordance with ISO 834. / En nyckelfaktor för brandsäkerheten i träbyggnader är prestandan hos förbanden mellan konstruktionselementen eftersom dessa bestämmer konstruktionens lastbärande kapacitet. Traditionella träförband har i allmänhet dåligt brandmotstånd i förhållande till omgivande delar, detta eftersom förbanden ofta består av exponerade metalldelar och kaviteter som lokalt försvagar brandmotståndet. Dessa svagheter motverkas ofta genom att montera gips vilket negativt påverkar träets estetiska utseende. Genom en innovativ konstruktion av träförband är hoppet att den svaga punkten vid förhöjd temperatur flyttas från själva anslutningen till omgivande delar, vilket ökar konstruktionens brandmotstånd genom att brandmotståndet då begränsas av prestandan hos de anslutna komponenterna. Två typer av limträförband har byggts och testats vid RISE-anläggningen i Borås med syfte att bestämma om dessa under belastning skulle kunna stå emot brandexponering under 90 minuter. Förbanden monteras genom att expandera ihåliga stålrör som klämmer samman elementen och samtidigt deformeras mot insidan av det förborrade hålet. Förspänningar skapas i förbandet under denna process som förhindrar en primär förskjutning om förbandet är lastat, vilket är en av anledningarna till att denna typ av anslutningar är lämpliga i jordbävningsbenägna områden. Denna konstruktion resulterar i en betydligt ökad rotationsstyvhet, momentkapacitet och inbäddad energi i jämförelse med konventionella träförband. En av anslutningarna är konstruerad för att motstå momentkrafter. Provkroppen är byggd som en balk-balkanslutning som utsätts för ett fyrapunkts böjningstest vid både rumstemperatur och förhöjd temperatur. Anslutningen klarade 39.5 kNm vid rumstemperatur och fallerade efter 87 minuter och 6 sekunder av belastning i förhöjda temperaturer. Brottet i förhöjd temperatur inträffade emellertid inte i anslutningen och den visuella inspektionen som utfördes efter testet indikerade att stålrören fortfarande var i utmärkt skick. Anslutningen bedöms därför ha kunnat motstå 90 minuters brandexponering. Det andra förbandet är konstruerat för att motstå tvärkrafter och är byggt som en pelare-balkanslutning som testas vid både rumstemperatur och förhöjd temperatur. Anslutningen klarade en maximal skjuvkraft på 181.4 kN vid rumstemperatur, cirka 30 kN högre än tidigare utfört test med identisk uppställning, och fallerade efter 113 minuters belastning i förhöjd temperatur. Brottet i förhöjd temperatur inträffade emellertid inte i själva anslutningen. Testerna är begränsade till oskyddade förband bestående av limträ som under brandpåverkan testas enligt ISO 834.
|
6 |
Brandpåverkan på skyddskonstruktioner i funktionsskyddsrum : En undersökning av resthållfasthet i betongbalkarMalmros, Catrine, Andrea, Johnson January 2018 (has links)
In the beginning of the 21st century decisions were made regarding the decommission of the total defence in Sweden. Since then the security policy situation has changed, regarding both the risk of war and other types of treats such as terrorism. Due to this the total defence is now being re-established. The Swedish Fortifications Agency and Research Institutes of Sweden (RISE) has initiated the Centre of excellence for fortification (CFORT) to support the development of competence in fortification. In case of a crisis or war secured function shelters constitutes a significant part of the Swedish total defence by protecting important technology and activity.The purpose of this bachelor thesis is to investigate the remaining load bearing capacity in concrete constructions in secured function shelters after exposure to fire. This will provide a foundation for further research within the area of the effects of fire in secured function shelters. To achive this, experiments were conducted on nine concrete beams which were casted according to calculations based on the structural codes of the Swedish Fortifications Agency (FKR). Since fully scaled beams are difficult to manage and would not fit in the equipment being used, the beams were casted in a smaller size; 2000 x 150 x 210 mm. Samples of the concrete and the reinforcement were sent to the Swedish Cement and Concrete Research Institute (CBI) for tests which provided actual values of the compressive strength, yield point and modulus of elasticity. Six of the beams were in pairs exposed to fire in a specially built oven according to three different temperature curves. All the beams were later subjected to load until failure. Calculations regarding load bearing capacity were executed with both theoretical and actual values obtained from CBI. The results were compared to the results from the loading tests. During the last fire experiment the beams spalled, most likely due to the quickly rising temperature. The loading test showed that the strength of the beams which had not spalled were not significantly lower than the unaffected beams. Those beams showed a reduction of only 0 – 6 %. However, the beams which had spalled showed a reduce in strength of approximately 20 %. / Centrum för fortifikatorisk kompentens
|
7 |
Branddimensionering av CLT-element i bärande väggkonstruktioner : en komparativ studie mellan gällande normer och senaste forskningen / Fire protection design of CLT elements used as structural walls : a comparative study between current design codes and the latest scientific knowledgeHallqvist, Stefan, Berkal, Cherif January 2018 (has links)
I takt med en ökad miljömedvetenhet har träbyggnation börjat premieras allt mer och sedan lagändringen 1994 som innebar att det blev tillåtet att uppföra höga hus med trästomme har utvecklingen snabbt gått framåt. Att korsvis bygga upp skikt av brädor och sammanfoga dessa till element har visat sig skapa en produkt med hög hållfasthet och låg vikt som är idealisk som stommaterial vid byggnation av stora och höga hus i trä. Dessa element har många namn men kallas ofta korslimmat trä och kommer i arbetet benämnas CLT, cross-laminated timber. Dess användning har ökat markant i Sverige och Europa de senaste decennierna och än ses ingen stagnation på efterfrågan. Denna rapport behandlar relevanta teoretiska områden som måste tas i beaktning vid branddimensionering som exempelvis brandförloppet i en brandcell samt hur brandsäkerhetsklasser och brandtekniska byggnadsklasser bestäms och fastställs. Dimensioneringsmetoder av laster och hållfasthet i både brottgräns och i brandfallet förklaras genomgående för skapa en tydlig bild av hela branddimensioneringsprocessen. Brist på direkt information om hur hållfastheten av resttvärsnitten ska behandlas och beräknas har gjort arbetet utmanande men med hjälp från Maija Tiainen från Sweco structures Helsingforskontor har arbetet kunnat färdigställas och bli fullständigt. Den viktigaste delen i rapporten är dock själva inbränningen och förkolningen av elementen som beräknas med hjälp av två olika metoder. Den ena återfinns i den europeiska standarden Eurokod 5: del 1-2 och den andra, som baseras på den absolut senaste forskningen gällande träkonstruktioner och brand, är hämtad från handboken Brandsäkra trähus version 3. Den senare metoden kommer ligga till grund för en uppdatering av Eurokod 5 i framtiden. För att kunna jämföra de två metoderna och ge en nyanserad bild av dessa valdes fyra väggtyper ut som beräknades med samma förutsättningar. Det vill säga skyddade med två lager gips och utsatta för en 90 minuters ensidig standardbrand. Resultatet visade på skillnader mellan metoderna där en tydlig och definitiv sådan var storleken på resttvärsnittet då det icke lastupptagande skiktet, , visade sig vara mycket större i beräkningarna enligt metoden i Brandsäkra trähus version 3. På grund av elementens uppbyggnad, korsvis lagda skikt där endast vartannat skikt är lastbärande, betyder detta inte nödvändigtvis att det resulterar i en skillnad gällande bärförmåga i brandfallet mellan de två metoderna. Trots att metoden i Brandsäkra trähus version 3 är mer konservativ gällande bärförmåga och leder till ett mindre resttvärsnitt efter brand anser författarna att denna metod bör användas i väntan på en inarbetning av metoden i Eurokoden. Detta då den till skillnad från Eurokoden är utformad och framtagen för att kunna behandla CLT och då säkerheten är viktigast i sammanhanget måste brandens ökade påverkan på materialet enligt den senaste forskningen tas på allvar och tvärsnittet dimensioneras därefter. / In recent years, a growing environmental awareness have led to an increase in timber buildings and since the 1994 amendment that made it possible to build tall houses with timber structures the progress in the field have seen an substantial increase. To build an element of perpendicularly placed layers of solid-sawn lumber have proven to be an effective way to obtain a product with good strength-to-weight ratio that is ideal for use in tall timber buildings. These elements go under a lot of different names but are often referred to as cross-laminated timber and will be called CLT in this report. The use of this product have these past decades increased substantially both in Sweden and in Europe and the demand does not seem to stagnate nor decrease in the near future. The report is comprised of relevant theoretical sections that must be taken into account when designing a structures fire protection such as the development of a fire in fire compartment, how to define and determine a structures class of fire resistance and hence required fire protection time for said structure. The basis of design in regards to loads and compressive/flexural strength of the material is thoroughly explained in order to account for the whole fire protection design processes. The lack of information regarding compressive and flexural strength of the residual cross-section was challenging but with the help from Maija Tiainen from Sweco structures Helsinki office the report could be completed. The most important part of the report is the theory and calculation with regards to the charring depth which is calculated by two different methods. The first one is presented in the European standard Eurocode 5: part 1-2 and the other one, that is based on the latest scientific knowledge with regards to timber structures and fire, is found in the technical guide Brandsäkra trähus version 3. The aforementioned method will form the basis for the upcoming update of Eurocode 5. In order to be able to compare the two methods four wall types was chosen and designed based on the same conditions. Namely protected by two layers of gypsum plasterboards as fire protection and exposed to a 90 minutes one-sided standard fire. The result showed differences between the methods where a clear difference was the size of the residual cross-section due to the fact that the zero-strength layer, , was notably larger when calculating with the method presented in Brandsäkra trähus version 3. This does not necessarily affect the elements bearing capacity when calculating with the two different methods due to the elements perpendicularly placed layers where only every other layer is load bearing. Although the method presented in Brandsäkra trähus version 3 are more conservative with regards to bearing capacity and will lead to a smaller residual cross-section the authors of this report recommend the use of said method pending incorporation into the Eurocode. The motivation for this suggestion is that the method is designed to explicitly handle CLT and since safety is the most important aspect in this context it is vital to acknowledge the apparent increased affect from a fire on the material according to the latest scientific knowledge and design the cross-section accordingly.
|
Page generated in 0.0522 seconds