• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 9
  • 8
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 64
  • 31
  • 19
  • 18
  • 13
  • 12
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulation models for rolling bearing vibration generation and fault detection via neural networks

Wang, Xiaofeng January 1997 (has links)
No description available.
2

Evaluating the Effects of Spalling on the Capacity of Reinforced Concrete Bridge Girders

Luckai, Jeffrey W. 24 August 2011 (has links)
Corrosion of the reinforcing steel is a primary deterioration mechanism for reinforced concrete bridges. Heavy use of de-icing salts is believed to be a major contributor in Ontario to severe girder soffit spalling in certain cases. This thesis develops an assessment methodology to evaluate spalled bridges based on ultimate limit states. Specifically, a deterministic program is developed for assessment. It is subsequently compared to laboratory test results and used as a basis for a probabilistic reliability study. A modified area concept is proposed in this thesis to consider the effects of exposing reinforcement at various locations along the girder length. A multipoint analysis program, BEST (Bridge Evaluation Strength Tool), is developed that employs this concept, along with graphical spalling surveys and structural drawings, to evaluate reinforced concrete bridge girders. The program is adapted for a full bridge analysis and to consider the other effects of corrosion, such as bar section loss and bond deterioration. A case study bridge is evaluated to show that the BEST program offers a viable tool for the rapid assessment of spalled bridge girders and to facilitate the prioritization of rehabilitation projects. This evaluation indicates that the spatial distribution of the spalling along a girder, relative to bar splices and laps, has the most significant influence on structural capacity. Single girders show strength deficiencies in flexure and shear due to spalling. In general, the consideration of system effects improves the predicted bridge condition, while considering section loss and bond deterioration has the opposite effect. Laboratory work is used to validate the proposed model and identify a number of areas for future research. The laboratory test results also suggest that the current repair methods are effective in restoring bond and strength. In order to further explore potential uses for the BEST program, modifications are made so that it can be used to perform reliability analyses using Monte-Carlo simulation techniques. A simplified approach for estimating the reliability index as a function of the deterministic resistance ratio is proposed based on the reliability analysis results.
3

Evaluating the Effects of Spalling on the Capacity of Reinforced Concrete Bridge Girders

Luckai, Jeffrey W. 24 August 2011 (has links)
Corrosion of the reinforcing steel is a primary deterioration mechanism for reinforced concrete bridges. Heavy use of de-icing salts is believed to be a major contributor in Ontario to severe girder soffit spalling in certain cases. This thesis develops an assessment methodology to evaluate spalled bridges based on ultimate limit states. Specifically, a deterministic program is developed for assessment. It is subsequently compared to laboratory test results and used as a basis for a probabilistic reliability study. A modified area concept is proposed in this thesis to consider the effects of exposing reinforcement at various locations along the girder length. A multipoint analysis program, BEST (Bridge Evaluation Strength Tool), is developed that employs this concept, along with graphical spalling surveys and structural drawings, to evaluate reinforced concrete bridge girders. The program is adapted for a full bridge analysis and to consider the other effects of corrosion, such as bar section loss and bond deterioration. A case study bridge is evaluated to show that the BEST program offers a viable tool for the rapid assessment of spalled bridge girders and to facilitate the prioritization of rehabilitation projects. This evaluation indicates that the spatial distribution of the spalling along a girder, relative to bar splices and laps, has the most significant influence on structural capacity. Single girders show strength deficiencies in flexure and shear due to spalling. In general, the consideration of system effects improves the predicted bridge condition, while considering section loss and bond deterioration has the opposite effect. Laboratory work is used to validate the proposed model and identify a number of areas for future research. The laboratory test results also suggest that the current repair methods are effective in restoring bond and strength. In order to further explore potential uses for the BEST program, modifications are made so that it can be used to perform reliability analyses using Monte-Carlo simulation techniques. A simplified approach for estimating the reliability index as a function of the deterministic resistance ratio is proposed based on the reliability analysis results.
4

Development of non-linear bond stress-slip models for reinforced concrete structures in fire

Khalaf, Jamal January 2017 (has links)
Exposure of concrete structures to high temperatures leads to significant losses in mechanical and physical properties of concrete and steel reinforcement as well as the bond characteristics between them. Degradation of bond properties in fire may significantly influence the load capacity of concrete structures. Therefore the bond behaviours need to be considered for the structural fire engineering design of reinforced concrete structures. At present, the information about the material degradations of concrete and reinforcing steel bars at elevated temperatures are generally available. However, the research on the response of the bond characteristic between concrete and reinforcing steel bar at elevated temperatures is still limited. Due to the lack of robust models for considering the influence of the bond characteristics between the concrete and steel bar at elevated temperatures, the majority of the numerical models developed for predicting the behaviour of reinforced concrete structures in fire was based on the full bond interaction. Hence, the main purpose of this research is to develop robust numerical models for predicting the bond-slip between concrete and the reinforcement under fire conditions. Therefore, the bond-slip between the concrete and reinforcement for conventional and prestress concrete structures at both ambient and elevated temperatures has been investigated in this research. Two models have been developed in this study: the first model is to simulate the behaviour of bond-slip of deformed steel bars in normal concrete at room temperature and under fire conditions. The model is established based on a partly cracked thick-wall cylinder theory and the smeared cracking approach is adopted to consider the softening behaviour of concrete in tension. The model is able to consider a number of parameters: such as different concrete properties and covers, different steel bar diameters and geometries. The proposed model has been incorporated into the Vulcan program for 3D analysis of reinforced concrete structures in fire. The second robust model has been developed to predict the bond stress-slip relationship between the strand and concrete of prestressed concrete structural members. In this model, two bond-slip curves have been proposed to represent the bond-slip characteristics for the three-wire and seven-wire strands. This model considers the variation of concrete properties, strands’ geometries and the type of strand surface (smooth or indented). The degradation of materials and bond characteristic at elevated temperatures are also included in the model. The proposed models have been validated against previous experimental results at both ambient and elevated temperatures and good agreements have been achieved. A comprehensive parametric study has been carried out in this research to examine the influence of bond-slip model on the structural behaviours of normal reinforced concrete structures. The study investigated the most important factors that can affect the bond characteristics between concrete and steel reinforcement at elevated temperatures. These factors are: the concrete cover, spalling of concrete, concrete compressive and tensile strengths.
5

Insights into Crack Dynamics Governing Surface Quality during Spalling of Semiconductors

January 2020 (has links)
abstract: The rationale of this thesis is to provide a thorough understanding of spalling for semiconductor materials and develop a low temperature spalling technology that reduces the surface roughness of the spalled wafers for Photovoltaics applications. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2020
6

Dynamic Modelling and Fault Feature Analysis of Gear Tooth Pitting and Spalling

Luo, Yang 21 February 2019 (has links)
Fault feature analysis of gear tooth spall plays a vital role in gear fault diagnosis. Knowing the characteristic of fault features and their evolution as a gear tooth fault progresses is key to fault severity assessment. This thesis provides a comprehensive (both theoretical and experimental) analysis of the fault vibration features of a gear transmission with progressive localized gear tooth pitting and spalling. A dynamic model of a one-stage spur gear transmission is proposed to analyze the vibration behavior of a gear transmission with tooth fault. The proposed dynamic model considers the effects of Time Varying Mesh Stiffness (TVMS), tooth surface roughness changes and geometric deviations due to pitting and spalling, and also incorporates a time-varying load sharing ratio, as well as dynamic tooth contact friction forces, friction moments and dynamic mesh damping ratios. The gear dynamical model is validated by comparison with responses obtained from an experimental test rig under different load and fault conditions. In addition, several methods are proposed for the evaluation of the TVMS of a gear pair with tooth spall(s) with curved bottom and irregular shapes, which fills the current research gap on modelling tooth spalls with irregular shapes and randomly distribution conditions. Experiments are conducted and the fault vibration features and their evolution as the tooth fault progresses are analyzed. Based on feature analysis, a new health indicator is proposed to detect progressive localized tooth spall.
7

Effect of Localized Corrosion of Steel on Chloride-Induced Concrete Cover Cracking in Reinforced Concrete Structures

Busba, Ezeddin Rafaa 01 January 2013 (has links)
Abstract: Concrete cover cracking due to reinforcement corrosion is widely accepted as a limit-state indicator in defining the end of functional service life for existing reinforced concrete (RC) structures undergoing corrosion. Many of the currently available durability prediction models are incapable of providing realistic estimates of remaining service lives of RC structures beyond the corrosion initiation point. Therefore, the need to incorporate the length of the corrosion propagation stage in a comprehensive durability prediction approach has recently received much research attention. Previous research focus however was mostly limited to the case of uniformly corroding reinforcement with only few studies addressing the commonly encountered case of localized rebar corrosion. It was empirically shown in a previous study that localized corrosion can have a mitigating effect on time to concrete cover cracking due to the larger required depth of rebar corrosion penetration (Critical penetration or Xcrit). The present research was focused on developing a model for predicting Xcrit for various degrees of corrosion localization including new cases of highly localized corrosion. Accelerated corrosion testing of controlled anodic regions along axial rebars in sound concrete cylinders suggested that localized corrosion can increase Xcrit by up to about a factor of 10. The effect of corrosion localization on the orientation of corrosion-induced surface cracks was also addressed. Testing of freely corroding pre-cracked RC pipe specimens in a chloride-containing environment indicated that steel corrosion can be localized at intersection regions with the pre-existing cracks and uniformly distributed around the reinforcing steel perimeter. Numerical modeling was undertaken to substantiate the experimentally observed trends on a theoretical basis for various degrees of corrosion localization. A mechanical model was developed to improve understanding of the underlying mechanism responsible for corrosion-induced stresses. A thick-walled multiple-cylinder approach was employed to simulate crack initiation and propagation to account for the residual strength property of concrete after cracking by applying the principles of applied elasticity. For a given concrete cover depth, the amount of Xcrit was shown by modeling to be largely determined by the length of corroding region and the capacity of the induced cracks to accommodate produced rusts. The properties of both concrete-rebar interface and corrosion products were also found to have a significant impact on Xcrit. Based on the model and experimental trends and comparisons with literature data, an improved relationship for the estimation of Xcrit was proposed. An electrochemical model was also formulated to address the possible role of corrosion aggravation due to macrocell coupling in counteracting the mitigating effect of increased Xcrit on time to concrete cover cracking. Findings confirmed that corrosion localization can reasonably be considered a mitigating factor for extending the corrosion propagation stage, and provided more precise quantification to that effect.
8

STRENGTH REDUCTION OF REINFORCED CONCRETE COLUMNS SUBJECTED TO CORROSION RELATED COVER SPALLING

Khalid, Nibras Nizar 23 May 2018 (has links)
No description available.
9

Strength and ductility of fibre reinforced high strength concrete columns

Zaina, Mazen Said, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2005 (has links)
The main structural objectives in column design are strength and ductility. For higher strength concretes these design objectives are offset by generally poor concrete ductility and early spalling of the concrete cover. When fibres are added to the concrete the post peak characteristics are enhanced, both in tension and in compression. Most of the available experimental data, on fibre reinforced concrete and fibre reinforced high strength concrete columns, suggest that an improvement in both ductility and load carrying capacity due to the inclusion of the fibres. In this thesis the ductility and strength of fibre reinforced high strength concrete are investigated to evaluate the effect of the different parameters on the performance of columns. The investigation includes both experimental and the numerical approaches with 56 high strength fibre reinforced concrete columns being tested. The concrete strength ranged between 80 and 100 MPa and the columns were reinforced with 1, 2 or 2.6 percent, by weight, of end hooked steel fibres. The effect of corrugated Polypropylene fibres on the column performance was also examined. No early spalling of the cover was observed in any of the steel fibre reinforced column tested in this study. A numerical model was developed for analysis of fibre and non-fibre reinforced eccentrically loaded columns. The column is modelled as finite layers of reinforced concrete. Two types of layers are used, one to represent the hinged zone and the second the unloading portion of the column. As the concrete in the hinged layers goes beyond the peak for the stress verus strain in the concrete the section will continue to deform leading to a localised region within a column. The numerical model is compared with the test data and generally shows good correlation. Using the developed model, the parameters that affect ductility in fibre-reinforced high strength concrete columns are investigated and evaluated. A design model relating column ductility with confining pressure is proposed that includes the effects of the longitudinal reinforcement ratio, the loading eccentricity and the fibre properties and content and design recommendations are given.
10

On the asperity point load mechanism for rolling contact fatigue

Dahlberg, Johan January 2007 (has links)
Rolling contact fatigue is a damage process that may arise in mechanical applications with repeated rolling contacts. Some examples are: gears; cams; bearings; rail/wheel contacts. The resulting damage is often visible with the naked eye as millimeter sized surface craters. The surface craters are here denoted spalls and the gear contact served as a case study. The work focused on the asperity point load mechanism for initiation of spalls. It was found that the stresses at asperity level may be large enough to initiate surface cracking, especially if the complete stress cycle was accounted for. The gear contact is often treated as a cylindrical contact. The thesis contains experimental and numerical results connected to rolling contact fatigue of cylindrical contacts. At the outset a stationary cylindrical contact was studied experimentally. The stationary test procedure was used instead of a rolling contact. In this way the number of contact parameters was minimized. The cylindrical contact resulted in four different contact fatigue cracks. The two cracks that appeared first initiated below the contact. The other two cracks developed at the contact surface when the number of load cycles and the contact load increased. The influence of a surface irregularity (asperity) was studied numerically with the Finite Element Method (FEM). Firstly, the stationary contact was modelled and investigated numerically. At the cylindrical contact boundary a single axisymmetric was included. The partially loaded asperity introduced a tensile surface stress, which seen from the asperity centre was radially directed. Secondly, FE simulations were performed where a single axisymmetric asperity was over-rolled by a cylindrical contact. The simulations were performed for pure rolling and rolling with slip. For both situations, tensile forward directed stresses in front of the asperity were found. The presence of slip and a surface traction greatly increased the stresses in front of the asperity. Finally, when rolling started from rest with applied slip, the distance to steady-state rolling was determined for elastic similar cylindrical rollers. / QC 20100702

Page generated in 0.0679 seconds