State-of-the-art machine learning methods such as convolutional neural networks (CNNs) are frequently employed in computer vision. Despite their high performance on unseen data, CNNs are often criticized for lacking transparency — that is, providing very limited if any information about the internal decision-making process. In some applications, especially in healthcare, such transparency of algorithms is crucial for end users, as trust in diagnosis and prognosis is important not only for the satisfaction and potential adherence of patients, but also for their health. Explainable artificial intelligence (XAI) aims to open up this “black box,” often perceived as a cryptic and inconceivable algorithm, to increase understanding of the machines’ reasoning.XAI is an emerging field, and techniques for making machine learning explainable are becoming increasingly available. XAI for computer vision mainly focuses on image classification, whereas interpretability in other tasks remains challenging. Here, I examine explainability in computer vision beyond image classification, namely in semantic segmentation and 3D multitarget image regression.
This thesis consists of five chapters.
In Chapter 1 (Introduction), the background of artificial intelligence (AI), XAI, computer vision, and optics is presented, and the definitions of the terminology for XAI are proposed.
Chapter 2 is focused on explaining the predictions of U-Net, a CNN commonly used for semantic image segmentation, and variations of this architecture. To this end, I propose the gradient-weighted class activation mapping for segmentation (Seg-Grad-CAM) method based on the well-known Grad-CAM method for explainable image classification.
In Chapter 3, I present the application of deep learning to estimation of optical aberrations in microscopy biodata by identifying the present Zernike aberration modes and their amplitudes. A CNN-based approach PhaseNet can accurately estimate monochromatic aberrations in images of point light sources. I extend this method to objects of complex shapes.
In Chapter 4, an approach for explainable 3D multitarget image regression is reported. First, I visualize how the model differentiates the aberration modes using the local interpretable model-agnostic explanations (LIME) method adapted for 3D image classification. Then I “explain,” using LIME modified for multitarget 3D image regression (Image-Reg-LIME), the outputs of the regression model for estimation of the amplitudes.
In Chapter 5, the results are discussed in a broader context.
The contribution of this thesis is the development of explainability methods for semantic segmentation and 3D multitarget image regression of optical aberrations. The research opens the door for further enhancement of AI’s transparency.:Title Page i
List of Figures xi
List of Tables xv
1 Introduction 1
1.1 Essential Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.1 Artificial intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Explainable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Proposed definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Explainable Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Aims and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Image classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.3 Image regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.4 Image segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.1 Aberrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.2 Zernike polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.2 Dissertation outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2 Explainable Image Segmentation 23
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1 CAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 Grad-CAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 U-Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.4 Seg-Grad-CAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.1 Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.2 TextureMNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.3 Cityscapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.1 Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.2 TextureMNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5.3 Cityscapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3 Estimation of Aberrations 55
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.1 PhaseNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.2 PhaseNet data generator . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.3 Retrieval of noise parameters . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.4 Data generator with phantoms . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.5 Restoration via deconvolution . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.6 Convolution with the “zero” synthetic PSF . . . . . . . . . . . . . . . . 63
3.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4.1 Astrocytes (synthetic data) . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4.2 Fluorescent beads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4.3 Drosophila embryo (live sample) . . . . . . . . . . . . . . . . . . . . . . 67
3.4.4 Neurons (fixed sample) . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.5.1 Astrocytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.5.2 Conclusions on the results for astrocytes . . . . . . . . . . . . . . . . . . 74
3.5.3 Fluorescent beads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.5.4 Conclusions on the results for fluorescent beads . . . . . . . . . . . . . . 81
3.5.5 Drosophila embryo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.5.6 Conclusions on the results for Drosophila embryo . . . . . . . . . . . . . 87
3.5.7 Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4 Explainable Multitarget Image Regression 99
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.3.1 LIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.3.2 Superpixel algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3.3 LIME for 3D image classification . . . . . . . . . . . . . . . . . . . . . . 104
4.3.4 Image-Reg-LIME: LIME for 3D image regression . . . . . . . . . . . . . 107
4.4 Results: Classification of Aberrations . . . . . . . . . . . . . . . . . . . . . . . . 109
viii
TABLE OF CONTENTS
4.4.1 Transforming the regression task into classification . . . . . . . . . . . . 110
4.4.2 Data augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.4.3 Parameter search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.4.4 Clustering of 3D images . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.4.5 Explanations of classification . . . . . . . . . . . . . . . . . . . . . . . . 114
4.4.6 Conclusions on the results for classification . . . . . . . . . . . . . . . . 117
4.5 Results: Explainable Regression of Aberrations . . . . . . . . . . . . . . . . . . 118
4.5.1 Explanations with a reference value . . . . . . . . . . . . . . . . . . . . 121
4.5.2 Validation of explanations . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5 Conclusions and Outlook 127
References 129
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:88703 |
Date | 18 December 2023 |
Creators | Vinogradova, Kira |
Contributors | Sbalzarini, Ivo F., Kreshuk, Anna, Myers, Eugene W., Technische Universität Dresden, Max-Planck-Institut für molekulare Zellbiologie und Genetik |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0156 seconds