Return to search

Radiella vikter i Rn och lokala dimensioner / Radial weights in Rn and local dimensions

Kapaciteter kan vara till stor nytta, bland annat då partiella differentialekvationer ska lösas. Kapaciteter är dock i många fall väldigt svåra att beräkna exakt, speciellt i viktade rum. Vad som istället kan göras är att försöka uppskatta kapaciteterna, vilket för ringar runt en fix punkt kan utföras med hjälp av fyra olika exponentmängder, \underline{Q}_0, \underline{S}_0, \overline{S}_0 och \overline{Q}_0, som beskriver hur vikten beter sig i närheten av denna punkt och i viss mån ger rummets lokala dimension. För att kunna dra nytta av exponentmängderna är det bra att veta vilka kombinationer av dessa som kan förekomma. För att få fram nya kombinationer använder vi olika sätt att mäta volym av klot med varierande radier. Dessa mått är definierade genom olika vikter. Det har tidigare funnits ett fåtal exempel på hur olika kombinationer av exponentmängderna kan se ut. Variationerna består av hur avstånden är i förhållande till varandra och om ändpunkterna tillhör mängderna eller inte. I denna rapport har vi tagit fram ytterligare fem nya kombinationer av mängderna, bland annat en där \underline{Q}_0 är öppen. / Capacities can be of great benefit, for instance when solving partial differential equations. In most cases, capacities can be difficult to calculate exactly, in particular on weighted spaces. In these cases, it can be sufficient with an estimation of the capacity instead. For annuli around a given point, the estimation can be done using four exponent sets \underline{Q}_0, \underline{S}_0, \overline{S}_0 and \overline{Q}_0, which describe how the weight behaves in a neighbourhood of that point and in some sense define the local dimension of the space. To be able to use the exponent sets, it is useful to know which combinations of them can exist. For this we use various measures, which are a way to measure volumes of balls with varying radii in Rn. These measures are defined by different weights. Earlier, there existed a few examples giving different combinations of exponent sets. The variations consist in their relationship to each other and if their endpoints belong to the set or not. In this thesis we present five new combinations of the exponent sets, amongst them one where \underline{Q}_0 is open.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-107173
Date January 2014
CreatorsSvensson, Hanna
PublisherLinköpings universitet, Matematik och tillämpad matematik, Linköpings universitet, Tekniska högskolan
Source SetsDiVA Archive at Upsalla University
LanguageSwedish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds