Return to search

A new expression system in Saccharomyces cerevisiae based on nitrogen catabolite regulation / Un nouveau système d'expression en levure Saccharomyces cerevisiae basé sur la répression catabolique azotée

SUMMARY<p><p>Gap1, the general amino acid permease of Saccharomyces cerevisiae, is a plasma membrane protein which is synthesized and most active under conditions of poor nitrogen supply. Under these conditions, the role of Gap1 is to scavenge external amino acids to be used as nitrogen sources or directly as building blocks for protein synthesis. Gap1 is a member of the Yeast Amino Acid Transporter (YAT) family, a family of amino acid transporters highly conserved in bacteria and fungi. <p>The intracellular trafficking of Gap1 has been the subject of intense investigation as well as the role of lipids (in particular sphingolipids) in its activity and folding. These studies have all been carried out in the cellular context using versatile yeast genetics as exploratory tools. While such in vivo investigations allow to identify physiologically relevant features, they do not provide the details to understand the molecular basis of these phenomena. In order to decipher the molecular features responsible for biological functions, physiological analysis must be combined with biochemical, biophysical and structural studies which typically will be performed on isolated and purified proteins.<p>Our work during this study fits in this trans-disciplinary approach that aims at understanding different properties of the protein: (I) how sphingolipids modulate the activity of Gap1, (II) what part of the protein, and more specifically, what residues, are implicated in its regulation and (III) what are the molecular determinants of the multi-specificity of Gap1.<p>At the beginning of this work, Gap1 had not been previously produced and purified. During this thesis we have identified suitable expression and purification strategies for Gap1 and initiated first characterization studies. In the process, we have developed a new expression system in S. cerevisiae based on the nitrogen catabolite repression. <p>The capacity of this system to express other proteins was successfully tested for two other yeast transporters (Mep2 and Uga4) and for two human proteins: MD-2, a soluble protein and Vglut1, a vesicular transporter.<p>Therefore, we propose our expression design as a viable alternative to existing systems of production in yeast and as a valuable tool to be tested when starting the expression of a new target. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Identiferoai:union.ndltd.org:ulb.ac.be/oai:dipot.ulb.ac.be:2013/209428
Date05 September 2013
CreatorsDebailleul, Fabien
ContributorsGovaerts, Cédric, Goormaghtigh, Erik, Raussens, Vincent, Morsomme, Pierre, André, Bruno, Poolman, Bert
PublisherUniversite Libre de Bruxelles, Université libre de Bruxelles, Faculté des Sciences – Chimie, Bruxelles
Source SetsUniversité libre de Bruxelles
LanguageFrench
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis, info:ulb-repo/semantics/doctoralThesis, info:ulb-repo/semantics/openurl/vlink-dissertation
Format1 v. (99 p.), No full-text files

Page generated in 0.0058 seconds