Return to search

Online Identification of Running Resistance and Available Adhesion of Trains / Online identifiering av tågs gångmotstånd och tillgänglig adhesion

Two important physical aspects that determine the performance of a running train are the total running resistance that acts on the whole train moving forward, and the available adhesion (utilizable wheel-rail-friction) for propulsion and breaking. Using the measured and available signals, online identification of the current running resistance and available adhesion and also prediction of future values for a distance ahead of the train, is desired. With the aim to enhance the precision of those calculations, this thesis investigates the potential of online identification and prediction utilizing the Extended Kalman Filter. The conclusions are that problems with observability and sensitivity arise, which result in a need for sophisticated methods to numerically derive the acceleration from the velocity signal. The smoothing spline approximation is shown to provide the best results for this numerical differentiation. Sensitivity and its need for high accuracy, especially in the acceleration signal, results in a demand of higher sample frequency. A desire for other profound ways of collecting further information, or to enhance the models, arises with possibilities of future work in the field. / Två viktiga fysikaliska aspekter som bestämmer prestandan för ett tåg i drift är det totala gångmotståndet som verkar på hela tåget, samt den tillgängliga adhesionen (användbara hjul-räl-friktionen) för framdrivning och bromsning. Från de tillgängliga signalerna önskas identifiering, samt prediktering, av dessa två storheter, under drift. Med målet att förbättra precisionen av dessa skattningar undersöker detta examensarbete potentialen av skattning och prediktering av gångmotstånd och adhesion med hjälp av Extended KalmanFiltering. Slutsatsen är att problem med observerbarhet och känslighet uppstår, vilket resulterar i ett behov av sofistikerade metoder att numeriskt beräkna acceleration från en hastighetssignal. Metoden smoothing spline approximation visar sig ge de bästa resultaten för denna numeriska derivering. Känsligheten och dess medförda krav på hög precision, speciellt på accelerationssignalen, resulterar i ett behov av högre samplingsfrekvens. Ett behov av andra adekvata metoder att tillföra ytterligare information, eller att förbättra modellerna, ger upphov till möjliga framtida utredningar inom området.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-71301
Date January 2011
CreatorsAhlberg, Jesper, Blomquist, Esbjörn
PublisherLinköpings universitet, Fordonssystem, Linköpings universitet, Fordonssystem
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0026 seconds