La biomasse lignocellulosique est considérée comme une ressource de carbone renouvelable possédant un grand potentiel pour la une valorisation énergétique et chimique. La torréfaction de la biomasse sèche (de type bois) est un procédé de transformation thermique s’effectuant à des températures comprises entre 200°C et 300°C, et un temps de séjour compris entre quelques minutes et plusieurs heures, opérant sous pression atmosphérique et en défaut d’air. Le produit principal de la torréfaction est un combustible solide hydrophobe et stable. Cette opération génère des coproduits gazeux à haute température qui sont habituellement considérés comme des effluents pénalisants, apportant au mieux un appoint d’énergie pour le procédé. Pourtant, de nombreux constituants présents dans les condensats – récupérés par condensation des coproduits de torréfaction – pourraient être valorisés comme produits chimiques bio-sourcés. L'objectif de la thèse est de proposer un procédé de séparation-purification pour les composés condensables présents dans ces effluents gazeux. Ces condensats constituent une phase majoritairement aqueuse, contenant plus de 150 espèces organiques identifiées. Les espèces minoritaires sont présentes dans des proportions variables suivant le bois torréfié. Enfin il s’agit d’un mélange réactif et thermiquement instable, où différents équilibres chimiques sont présents. Une analyse des caractéristiques physico-chimiques des condensats a permis de proposer un milieu modèle limité à une dizaine de composés. Un modèle représentatif du comportement thermodynamique de ce mélange réactif à large spectre de masse moléculaire a été sélectionné et les paramètres d’interaction binaire identifiés. Des données expérimentales d’équilibres liquide-vapeur ont été acquises pour valider en partie ce modèle. Les composés cibles et les objectifs du procédé de valorisation ont été choisis et plusieurs stratégies de valorisation ont été élaborées et simulées sous Prosim+ sur la base de la modélisation thermodynamique. Cette étude a permis d’évaluer ces différentes stratégies en termes d’efficacité énergétique et de pureté des produits finaux pour une potentielle mise en place à l’échelle industrielle de cette filière. / Lignocellulosic biomass is considered as a renewable carbon resource with great potential for the energy and chemical recovery. Torrefaction is a thermal process carried out at temperatures below 300°C, under inert atmosphere, at atmospheric pressure, and with residence times for the solid biomass ranging from few minutes to several hours. Torrefied wood is a solid product constituted by more than 70% of the initial mass with properties close to those of coal. The 30% remaining part is a gaseous effluent, composed of about one third of non-condensable gases – carbon monoxide and carbon dioxide – and two thirds of condensable species. Currently, torrefied wood is the main product of interest and is usually transformed into energetic gases by the gasification process or directly used as coal for combustion. Conversely, gaseous by-products are considered at present time as a waste and in the best case are burned to provide energy to the process. Yet, the recovery and valorization of the condensable fraction as bio-sourced chemicals is worth considering. The aim of the thesis is to propose a separation-purification process for condensable chemicals of the waste gas. This condensable fraction is a predominantly aqueous phase, containing more than 150 identified organic species. Minority species are present in varying proportions depending on torrefied wood. Finally, it is a reactive and thermally unstable mixture, where different chemical equilibria are present. An analysis of the physicochemical characteristics of the condensable fraction allowed selecting a limited number of compounds to model the mixture. A representative model of the thermodynamic behavior of the reactive mixture has been selected and the binary interaction parameters identified. Experimental vapor-liquid equilibria data were acquired in part to validate this model. The target compounds and objectives of the recovery process were selected and several development strategies were developed and simulated in ProSim+ on the basis of thermodynamic modeling. This study assessed these different strategies in terms of energy efficiency and purity of the products for potential implementation on an industrial scale of this sector.
Identifer | oai:union.ndltd.org:theses.fr/2015INPT0131 |
Date | 10 December 2015 |
Creators | Detcheberry, Mylene |
Contributors | Toulouse, INPT, Meyer, Xuân-Mi, Condoret, Jean-Stéphane |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0063 seconds