• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 6
  • 1
  • Tagged with
  • 22
  • 13
  • 12
  • 10
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribution à la recherche des composés impliqués dans l’amertume de la racine de chicorée : approches métabolomique et sensorielle de l’influence de la torréfaction / Contribution to the research of compounds involved in the bitterness of the chicory root : metabolomic and sensory approach of the influence of the roasting process

Willeman, Honorine 04 May 2016 (has links)
La chicorée industrielle, cultivée pour sa racine, est transformée sous forme séchée ou torréfiée pour être consommée notamment comme boisson. La racine fraiche et ses dérivés alimentaires sont connus pour leur amertume, ce qui peut représenter un frein pour de nouveaux consommateurs. Si l’amertume native est attribuée aux composés terpéniques, nos résultats préliminaires indiquent une diminution de leur teneur lors de la torréfaction ce qui tend à démontrer que d’autres composés non identifiés sont responsables de l’amertume des produits torréfiés. De nos jours, aucunes études n’ont été menées permettant d’éclaircir l’impact de la torréfaction sur la composition native de la chicorée ni d’identifier les déterminants moléculaires de la saveur amère des produits finaux. Mes travaux de thèse ont donc été menés dans cet objectif. Par des approches de génomique et de métabolomique, une caractérisation large de 48 génotypes de chicorée industrielle a permis de constituer une collection de référence représentant la diversité globale. A travers cette sélection, l’étude de la composition chimique de la racine fraiche, des cossettes séchées et des produits torréfiés à différents niveaux a été entreprise. En parallèle, un profilage organoleptique des produits issus de 3 degrés de torréfaction a été effectué par analyse sensorielle. Ainsi, une évolution de la composition chimique et de l’amertume est constatée lors de la torréfaction. L’intégration des données à l’aide d’une démarche statistique de corrélation a permis de mettre en relation 3 composés néoformés ainsi que 6 signaux inconnus avec le degré d’amertume des produits torréfiés de la racine de chicorée. / Industrial chicory, cultivated for its root, is transformed in dried or roasted form to be consumed as a beverage in particular. Fresh root and its derivates are known for their bitterness, which may represent an obstacle to new consumers. Native bitterness is attributed to terpene compounds, but our preliminary results suppose that other compounds are involved in bitterness of the roasted product. Indeed, content in terpene compounds dramatically decrease during roasting process. Nowadays, no studies has been conducted either to clarify impact of roasting on native composition of chicory or to identify molecular determinants of bitter flavor in final products. My PhD work was therefore carried out to in this end. By genomic and metabolomic approaches, a wide characterization of 48 industrial chicory genotypes allows the constitution of a core collection representing global diversity. Through this selection, an analysis of chemical composition of the fresh root, dried cossettes and products roasted at different levels was undertaken. In parallel, an organoleptic profiling of products from three degrees of roasting was conducted by sensory analysis. Thus, a change in the chemical composition and sensory properties is found during roasting process. We used a statistical approach based on correlation to combine data from metabolomic and sensory analysis and so, 3 neoformed compounds and 6 unknown were highlighted as involved in the bitterness of roasted chicory products.
2

Valorisation chimique des condensats issus de la torréfaction de biomasses : modélisation thermodynamique, conception et analyse des procédés

Detcheberry, Mylène 10 December 2015 (has links) (PDF)
La biomasse lignocellulosique est considérée comme une ressource de carbone renouvelable possédant un grand potentiel pour la une valorisation énergétique et chimique. La torréfaction de la biomasse sèche (de type bois) est un procédé de transformation thermique s’effectuant à des températures comprises entre 200°C et 300°C, et un temps de séjour compris entre quelques minutes et plusieurs heures, opérant sous pression atmosphérique et en défaut d’air. Le produit principal de la torréfaction est un combustible solide hydrophobe et stable. Cette opération génère des coproduits gazeux à haute température qui sont habituellement considérés comme des effluents pénalisants, apportant au mieux un appoint d’énergie pour le procédé. Pourtant, de nombreux constituants présents dans les condensats – récupérés par condensation des coproduits de torréfaction – pourraient être valorisés comme produits chimiques bio-sourcés. L'objectif de la thèse est de proposer un procédé de séparation-purification pour les composés condensables présents dans ces effluents gazeux. Ces condensats constituent une phase majoritairement aqueuse, contenant plus de 150 espèces organiques identifiées. Les espèces minoritaires sont présentes dans des proportions variables suivant le bois torréfié. Enfin il s’agit d’un mélange réactif et thermiquement instable, où différents équilibres chimiques sont présents. Une analyse des caractéristiques physico-chimiques des condensats a permis de proposer un milieu modèle limité à une dizaine de composés. Un modèle représentatif du comportement thermodynamique de ce mélange réactif à large spectre de masse moléculaire a été sélectionné et les paramètres d’interaction binaire identifiés. Des données expérimentales d’équilibres liquide-vapeur ont été acquises pour valider en partie ce modèle. Les composés cibles et les objectifs du procédé de valorisation ont été choisis et plusieurs stratégies de valorisation ont été élaborées et simulées sous Prosim+ sur la base de la modélisation thermodynamique. Cette étude a permis d’évaluer ces différentes stratégies en termes d’efficacité énergétique et de pureté des produits finaux pour une potentielle mise en place à l’échelle industrielle de cette filière.
3

Approche multi échelle de l'emballement des réactions exothermiques de torréfaction de la biomasse lignocellulosique : de la cinétique chimique au lit de particules / kinetics and heat flux experiments and modelling of wood torrefaction : from microscale to pilot unit.

Cavagnol, Sofien 14 November 2013 (has links)
La torréfaction est une étape nécessaire pour la production de gazoles à partir de biomasse lignocellulosique par voie thermochimique (chaîne Biomass To Liquid). Il s'agit d'un traitement thermique dans le domaine de température compris entre 200 et 300°C en milieu non oxydant ; le but de cette étape est de modifier la structure de la biomasse afin d'en faciliter le transport pneumatique après broyage. Cependant, des réactions exothermiques ont été observées et peuvent mener à un mauvais contrôle de la température au sein du réacteur et nuire à la qualité des produits, voire endommager l'installation. L'objectif de cette thèse est de quantifier la chaleur émise par les réactions exothermiques de torréfaction de la biomasse lignocellulosique, et d'en étudier les impactes lors du changement d'échelle, où les phénomènes de transfert de masse et de chaleur ne sont plus négligeables. Durant nos travaux, des mesures de perte de masse et de flux de chaleur ont été réalisées à l'échelle de la poudre (microparticule) sur trois types d'essence de bois (robinier, épicéa et eucalyptus) ainsi que sur les principaux constituants de la matière lignocellulosique (cellulose, xylane, glucomannane et lignine). Un modèle cinétique capable de reproduire la perte de masse ainsi que le flux de chaleur généré par les réactions exothermiques, a été développé. Il utilise le concept de distribution d'énergie d'activation. Tous les paramètres du modèle ont été identifiés par méthode inverse sur un ensemble de tests isothermes d'une durée de 10 heures. Cela permet de proposer des paramètres cinétiques robustes et des valeurs fiables d'énergie d'activation. Par la suite, des mesures de température pendant des essais de torréfaction sur des planches de bois (méso-échelle) et sur un lit fixe de particules (échelle macroscopique) ont permis de mesurer la propagation d'une onde thermique générée par les réactions exothermiques. Une modélisation macroscopique qui intègre le modèle cinétique développé permet de propager l'effet des réactions exothermiques à l'échelle de la macro particule. L'analyse de l'ensemble des résultats permet de mettre en exergue l'importance de l'échelle lit sur l'emballement thermique observé expérimentalement. L'ensemble du travail, mené à différentes échelles spatiales et complété par une analyse permettant de relier ces échelles entre-elles, constitue une avancée significative vers la prédiction de l'exothermicité de la torréfaction afin d'assurer la sécurité et la faisabilité à l'échelle industrielle. / Lignocellulosic biomass torrefaction is an important step for diesel production through the BTL (Biomass To Liquid) chain. Torrefaction is a non-oxidative thermal treatment in the temperature range from 200 to 300°C. The aim of this process is to modify biomass structure in order to facilitate pneumatic transportation after grinding. However, some exothermic reactions are triggered in this temperature range which can lead to a lack of temperature control inside the reactor with detrimental effects on the product quality or even destructive effects on the facility. The purpose of this study is to contribute to the development of a multi-scale model for simulating these thermal runaway phenomena. Starting with the smallest scale, anhydrous weight loss combined with heat flux measurement from powders have been performed in a TGA-DSC. A data base was developed from three types of woody biomass, namely locust, spruce and an eucalyptus and from the main lignocellulsic components which are cellulose, xylan, glucomannan and lignin. A thermo-kinetic model able to reproduce the measured mass loss and heat flux during torrefaction has been developed by using the Distributed Activation Energy Method. Kinetic parameters and reaction enthalpies have been identified by inverse method taking into account the comprehensive set of data over several isothermal conditions with residence times of up to ten hours. Proceeding to larger scales, temperature measurements under torrefaction conditions have been performed separately in individual macro-particles and in a large scale packed bed of wood chips in order to test models at these scales. Thermal excursions were observed both within the particles and the bed due to the exothermic reactions. In the fixed bed an actual amplifying thermal wave was observed to propagate along the axial direction have been performed. A macroscopic heat and mass transfer model coupled with the kinetic model developed in this work allowed to simulate the temperature field at the macro-particle scale. Further model developmental work is needed to simulate the bed scale, Experimental observations and modelling carried out in this work represent an important improvement for the prediction of the heat released by torrefaction reactions in order to make this thermal pre-treatment safer and economically valuable.
4

Torréfaction du bois et de ses constituants : expériences et modélisation des rendements en matières volatiles / Torrefaction of wood and its constituents : experiments and modelling of volatile species

Nocquet, Timothée 18 December 2012 (has links)
Actuellement, l’industrialisation de la torréfaction de biomasse se heurte notamment à un manque de connaissances de la nature et de la quantité des matières volatiles produites en fonction des conditions opératoires et de la matière première. L’objectif de ces travaux est donc de mieux comprendre comment s’opère la torréfaction de la biomasse, en se concentrant sur l’étude de la perte de masse du solide et des rendements en matières volatiles. La torréfaction est considérée à partir de bois sec, sous atmosphère inerte et suivant un palier à une température comprise entre 200°C et 300°C. Lors d’une étude expérimentale, du hêtre et ses constituants, à savoir cellulose, xylane et lignine, ont été torréfiés, en régime chimique, dans une thermobalance et dans un pilote de torréfaction à échelle laboratoire. Le bilan matière boucle entre 97% et 104%. Les principales matières volatiles émises par la torréfaction de ce bois sont l’eau, le formaldéhyde, l’acide acétique et le CO2. De l’acide formique, du CO, du méthanol et du furfural sont aussi mesurés en quantité moindre. Certaines de ces espèces ne sont pas produites par tous les constituants du hêtre. Il semble en particulier que l’acide acétique soit produit à partir de la dégradation des acétates contenus dans les hémicelluloses. Par ailleurs, il apparaît en première approximation que la transformation peut être correctement représentée par la loi d’additivité jusqu’à 250°C. Cela n’est plus le cas à 280°C et 300°C, du fait d’interactions entre la cellulose et les deux autres constituants du bois. Celles-ci ralentissent la vitesse de torréfaction de la cellulose. A partir de ces résultats expérimentaux, a été développé dans ces travaux un modèle de torréfaction du bois, basé sur la superposition de « sous-modèles » décrivant chacun la torréfaction d’un constituant du bois. Ce modèle, qui présente comme originalité de prévoir en fonction de la proportion du bois en cellulose/hémicelluloses/lignine à la fois le rendement en solide et en huit espèces volatiles, et de prendre en compte les interactions à l’aide d’un facteur empirique, a été validé sur les expériences de torréfaction du hêtre entre 220°C et 300°C. Son utilisation a mis en évidence l’influence significative des contenus en hémicelluloses et cellulose sur les rendements en produits de la torréfaction. / The industrialization of the biomass torrefaction process requires better knowledge of the volatile species release versus operating conditions and feedstock. In this context, the present work aimed at studying solid mass loss and volatile species yields during biomass torrefaction. This transformation was considered on dry wood, at a temperature plateau between 200°C and 300°C and under inert atmosphere. First, torrefaction experiments were conducted under chemical regime on beechwood and its constituents – cellulose, lignin and hemicelluloses – in a thermobalance and in a lab-scale device. The mass balance closure was achieved with values ranging from 97 and 104%. The main volatile species measured were water, formaldehyde, acetic acid and CO2. Smaller amounts of methanol, CO, formic acid and furfural were also quantified. All those gas species were not produced by the three biomass constituents. In particular acetic acid seems to be produced by the degradation of the acetate groups contained in hemicelluloses. The results showed that in a first approximation torrefaction can be described by the additive law up to 250°C. But this law is not valid at 280°C and 300°C because of interactions between cellulose and the two other wood constituents. These interactions lead to a decrease in the torrefaction rate of cellulose. Based on these experimental results, a model of wood torrefaction was developed. It consists in the superposition of “sub-models” describing the torrefaction of each wood constituent. The originality of this model lies in its ability to predict both solid yield and eight volatile species yields depending on cellulose/hemicellulose/lignin wood composition, and to take into account interactions by means of an empirical factor. It was validated on beechwood torrefaction experiments between 220°C and 300°C. Finally, this model highlighted the significant influence of the proportion of hemicellulose and cellulose on torrefaction product yields.
5

Les hydrocarbures aromatiques polycycliques dans le café : mise au point de méthodes analytiques et étude de l'étape de torréfaction

Houessou, Justin Koffi 01 February 2007 (has links) (PDF)
No description available.
6

Approche multi échelle de l'emballement des réactions exothermiques de torréfaction de la biomasse lignocellulosique : de la cinétique chimique au lit de particules

Cavagnol, Sofien 14 November 2013 (has links) (PDF)
La torréfaction est une étape nécessaire pour la production de gazoles à partir de biomasse lignocellulosique par voie thermochimique (chaîne Biomass To Liquid). Il s'agit d'un traitement thermique dans le domaine de température compris entre 200 et 300°C en milieu non oxydant ; le but de cette étape est de modifier la structure de la biomasse afin d'en faciliter le transport pneumatique après broyage. Cependant, des réactions exothermiques ont été observées et peuvent mener à un mauvais contrôle de la température au sein du réacteur et nuire à la qualité des produits, voire endommager l'installation. L'objectif de cette thèse est de quantifier la chaleur émise par les réactions exothermiques de torréfaction de la biomasse lignocellulosique, et d'en étudier les impactes lors du changement d'échelle, où les phénomènes de transfert de masse et de chaleur ne sont plus négligeables. Durant nos travaux, des mesures de perte de masse et de flux de chaleur ont été réalisées à l'échelle de la poudre (microparticule) sur trois types d'essence de bois (robinier, épicéa et eucalyptus) ainsi que sur les principaux constituants de la matière lignocellulosique (cellulose, xylane, glucomannane et lignine). Un modèle cinétique capable de reproduire la perte de masse ainsi que le flux de chaleur généré par les réactions exothermiques, a été développé. Il utilise le concept de distribution d'énergie d'activation. Tous les paramètres du modèle ont été identifiés par méthode inverse sur un ensemble de tests isothermes d'une durée de 10 heures. Cela permet de proposer des paramètres cinétiques robustes et des valeurs fiables d'énergie d'activation. Par la suite, des mesures de température pendant des essais de torréfaction sur des planches de bois (méso-échelle) et sur un lit fixe de particules (échelle macroscopique) ont permis de mesurer la propagation d'une onde thermique générée par les réactions exothermiques. Une modélisation macroscopique qui intègre le modèle cinétique développé permet de propager l'effet des réactions exothermiques à l'échelle de la macro particule. L'analyse de l'ensemble des résultats permet de mettre en exergue l'importance de l'échelle lit sur l'emballement thermique observé expérimentalement. L'ensemble du travail, mené à différentes échelles spatiales et complété par une analyse permettant de relier ces échelles entre-elles, constitue une avancée significative vers la prédiction de l'exothermicité de la torréfaction afin d'assurer la sécurité et la faisabilité à l'échelle industrielle.
7

Étude de production et de caractérisation de biocharbons de Panic Érigé (Panicum virgatum L.) obtenus par pyrolyse

Pilon, Guillaume January 2013 (has links)
Dans le cadre de cette recherche, la production de biocharbon par pyrolyse est étudiée à des conditions visant sa valorisation comme biochar (amendement pour le sol), tout en considérant son potentiel comme charbon vert (pour bioénergie ou transformations subséquentes). La production du charbon de biomasse s'est effectuée à l'aide de deux réacteurs à lits fixes de types batch, d'une capacité de 1 et 25 gb.hlbatch, respectivement. Le panic érigé (Panicum virgatum) est la biomasse lignocellulosique qui a été utilisée dans le cadre des tests. Les facteurs de production étudiés sont principalement la température (300, 400 et 500 °C) pour un court temps de résidence en réacteur (2,5 et 5 min) et l'effet de l'usage du CO2 plutôt qu'un environnement plus conventionnel d'azote. L'effet de ces facteurs est étudié par rapport aux caractéristiques physico-chimiques des biocharbons obtenus. Un suivi des produits pyrolytiques complémentaires (bio-huile et gaz) a aussi été effectué. Des extractions de biocharbon par Soxhlet (à l'aide de dichlorométhane) ont été analysées par GC-MS et ont permis l'identification d'une multitude de produits présents dans les biocharbons. Les conditions spécifiques utilisées pour la pyrolyse, entre autres la convection forcée avec taux de chauffe rapide à 300 °C — N2 à l'aide du réacteur 1 glbatch, ont présenté des rendements et propriétés de biocharbon avantageux pour l'amélioration de la productivité du procédé de torréfaction (en comparaison avec des travaux rapportés, notamment ceux de Gilbert et al. [2009]). Les analyses des extractions de charbons de biomasse ainsi que des bio-huiles (par GC-MS), produites à l'aide du réacteur 25g/batch, ont permis d'observer des différences significatives dans les composés obtenus lors de l'usage de CO2 vs N2. Plusieurs composés observés dans les extraits de biocharbons, produits en atmosphère de N2, se retrouvent en quantités moindres dans les extraits de biocharbons produits en atmosphère de CO2 pour des températures communes. À titre d'exemple, le furfural, un composé aromatique commun provenant de la dégradation des glucides, s'est retrouvé uniquement dans les extraits de biocharbons en présence de N2 vs CO2, à 400 °C. Parmi l'ensemble des conditions étudiées (pour les 2 réacteurs), uniquement le naphtalène et des dérivés du naphtalène sont observés comme hydrocarbures aromatiques polycycliques, et ce, uniquement suivant les traitements à 500 °C. L'étude de l'usage du CO2 comme gaz d'entrée en réacteur mena à des différences significatives pour l'ensemble des températures étudiées, et ce, tant pour les biocharbons que pour les produits liquides et gazeux. À 300 °C, en environnement de CO2 comparé à N2, il est possible d'observer une production de bio-huile significativement plus faible (18,0 vs 24,6 %; CO2 vs N2 pour P<0,002), ce qui représente un résultat cohérent avec l'obtention de biocharbon au contenu en composés volatils significativement plus élevé obtenu aux mêmes conditions (0,29 vs 0,35 g composés volatils - biocharbotig biomasse originale; CO2 vs N2 pour P=0, I ). De plus, à 500 °C, un contenu en cendres de biocharbon significativement plus faible a été observé en environnement de CO2 vs N2 (P<0,06). [symboles non conformes]
8

Espèces condensables issues de torréfaction de biomasses lignocellulosiques : caractérisation aux échelles laboratoire et pilote / Condensable species released by torrefaction of lignocellulosic biomass : characterisation at pilot and laboratory scales

Lê Thành, Kim 16 November 2015 (has links)
La torréfaction est un traitement thermique opéré entre 200 et 300 °C en atmosphère inerte améliorant certaines propriétés de la biomasse, afin d’utiliser celle-ci comme biocombustible. Nos travaux portent spécifiquement sur la caractérisation des espèces condensables produites en torréfaction, aux échelles laboratoire et pilote. En laboratoire, des échantillons de pin, frêne, miscanthus et paille de blé ont été torréfiés à 250, 280 et 300 °C en réacteur à lit fixe. Les espèces condensables ont ensuite été analysées par GC-MS, GC-GC et HPLC-MS. Cette analyse a permis d’identifier une centaine d’espèces, dont une vingtaine, quantifiée, représente 77 % des condensables. À l’échelle pilote, un réacteur continu a été conçu, amélioré et caractérisé pour torréfier quelques kg.h-1 de biomasse. Un système de récupération multi-étagée des condensables a été développé. Des essais de torréfaction ont montré que les fractions condensées présentent des compositions chimiques différentes. / Orrefaction is mild thermal treatment carried out between 200 and 300 °C, in an inert atmosphere, improving properties of biomass, in order to use it as a biocombustible. This study focuses on the characterisation of the condensable species released during torrefaction, at laboratory and pilot scale. In the laboratory, some samples of pine, ash wood, miscanthus and wheat straw were torrefied at 250, 280 and 300 °C in a fixed bed reactor. The condensable species were analysed by GC-MS, GC-GC and HPLC-MS. Around a hundred of species were identified, including around twenty were quantified and represented 77 % of the condensable species. At pilot scale, a continuous reactor was designed, improved and characterised to treat several kg.h-1 of biomass. A multi-step recovery system for the condensable species was developped. Torrefaction experiments showed that the condensed fractions had different chemical compositions
9

Valorisation chimique des condensats issus de la torréfaction de biomasses : modélisation thermodynamique, conception et analyse des procédés / Recovery process of chemicals from wood torrefaction : thermodynamic modelling, design and analysis of the process

Detcheberry, Mylene 10 December 2015 (has links)
La biomasse lignocellulosique est considérée comme une ressource de carbone renouvelable possédant un grand potentiel pour la une valorisation énergétique et chimique. La torréfaction de la biomasse sèche (de type bois) est un procédé de transformation thermique s’effectuant à des températures comprises entre 200°C et 300°C, et un temps de séjour compris entre quelques minutes et plusieurs heures, opérant sous pression atmosphérique et en défaut d’air. Le produit principal de la torréfaction est un combustible solide hydrophobe et stable. Cette opération génère des coproduits gazeux à haute température qui sont habituellement considérés comme des effluents pénalisants, apportant au mieux un appoint d’énergie pour le procédé. Pourtant, de nombreux constituants présents dans les condensats – récupérés par condensation des coproduits de torréfaction – pourraient être valorisés comme produits chimiques bio-sourcés. L'objectif de la thèse est de proposer un procédé de séparation-purification pour les composés condensables présents dans ces effluents gazeux. Ces condensats constituent une phase majoritairement aqueuse, contenant plus de 150 espèces organiques identifiées. Les espèces minoritaires sont présentes dans des proportions variables suivant le bois torréfié. Enfin il s’agit d’un mélange réactif et thermiquement instable, où différents équilibres chimiques sont présents. Une analyse des caractéristiques physico-chimiques des condensats a permis de proposer un milieu modèle limité à une dizaine de composés. Un modèle représentatif du comportement thermodynamique de ce mélange réactif à large spectre de masse moléculaire a été sélectionné et les paramètres d’interaction binaire identifiés. Des données expérimentales d’équilibres liquide-vapeur ont été acquises pour valider en partie ce modèle. Les composés cibles et les objectifs du procédé de valorisation ont été choisis et plusieurs stratégies de valorisation ont été élaborées et simulées sous Prosim+ sur la base de la modélisation thermodynamique. Cette étude a permis d’évaluer ces différentes stratégies en termes d’efficacité énergétique et de pureté des produits finaux pour une potentielle mise en place à l’échelle industrielle de cette filière. / Lignocellulosic biomass is considered as a renewable carbon resource with great potential for the energy and chemical recovery. Torrefaction is a thermal process carried out at temperatures below 300°C, under inert atmosphere, at atmospheric pressure, and with residence times for the solid biomass ranging from few minutes to several hours. Torrefied wood is a solid product constituted by more than 70% of the initial mass with properties close to those of coal. The 30% remaining part is a gaseous effluent, composed of about one third of non-condensable gases – carbon monoxide and carbon dioxide – and two thirds of condensable species. Currently, torrefied wood is the main product of interest and is usually transformed into energetic gases by the gasification process or directly used as coal for combustion. Conversely, gaseous by-products are considered at present time as a waste and in the best case are burned to provide energy to the process. Yet, the recovery and valorization of the condensable fraction as bio-sourced chemicals is worth considering. The aim of the thesis is to propose a separation-purification process for condensable chemicals of the waste gas. This condensable fraction is a predominantly aqueous phase, containing more than 150 identified organic species. Minority species are present in varying proportions depending on torrefied wood. Finally, it is a reactive and thermally unstable mixture, where different chemical equilibria are present. An analysis of the physicochemical characteristics of the condensable fraction allowed selecting a limited number of compounds to model the mixture. A representative model of the thermodynamic behavior of the reactive mixture has been selected and the binary interaction parameters identified. Experimental vapor-liquid equilibria data were acquired in part to validate this model. The target compounds and objectives of the recovery process were selected and several development strategies were developed and simulated in ProSim+ on the basis of thermodynamic modeling. This study assessed these different strategies in terms of energy efficiency and purity of the products for potential implementation on an industrial scale of this sector.
10

Études expérimentales et modélisation du phénomène d’auto-échauffement de bois torréfié en présence de dioxygène : application au refroidissement de plaquettes de bois torréfiées / Experimental study and modeling of self-heating phenomenon of torrefied wood exposed to oxygen : application to the cooling of torrefied wood chips

Evangelista, Brieuc 24 November 2017 (has links)
La torréfaction est un procédé thermochimique qui, appliqué à la biomasse, permet d'améliorer les propriétés de ce matériau en tant que vecteur énergétique. Il s'opère entre 250 et 300°C sous atmosphère inerte. Dans le contexte énergétique actuel, l'augmentation des volumes de matières torréfiées produites, transportées et stockées est annoncée pour la décennie à venir. Ce développement à l'échelle industrielle soulève la problématique de l'auto-échauffement et des risques qui lui sont associés. Dans ce travail, une approche multi-échelles a été mise en oeuvre pour étudier le comportement du bois torréfié en présence d'oxygène. Des expériences ont été réalisées à l'échelle du milligramme, à celle d'une sphère de bois torréfié et à celle d'un lit de plaquettes de bois torréfié. Les réactions et l'auto-échauffement généré à l'échelle de la sphère ont été modélisés. Les résultats du modèle présentent une bonne adéquation avec les résultats expérimentaux. Quelle que soit l'échelle considérée, il a été montré que le bois sévèrement torréfié était plus sensible à l'auto-échauffement et à l'auto-combustion que le bois doucement torréfié. Il a également été confirmé que le suivi des gaz émis pourrait être un bon indicateur de la présence d'un auto-échauffement dans un lit de biomasse torréfiée. / Torrefaction is a thermochemical process which, applied to biomass, increases the fuel properties of this material. It operates between 250 and 300°C in an atmosphere depleted of oxygen. Considering the actual energetic context, the large scale development of the torrefied market is expected to the decade to come. This scale-up rises self-heating issue and its associated risks. In this work, a multiscale approach has been used to study the torrefied wood behavior when it gets into contact with oxygen The reactions have been studied at the milligram scale, self-heating has been generated for a unique torrefied wood sphere and self-heating at the reactor scale has been studied to better represent industrial conditions. Experiences have been done at all of these scales. Moreover, a modeled has been proposed to describe the reactions and the self-heating generated at the particle scale. Numerical results show good agreement with experiments. Furthermore, whatever the scale considered, it has been shown that the severely torrefied wood is more prone to self-heating than the mildly torrefied wood. It was also confirmed that continuous emitted gases monitoring could be a good indicator to detect and thus prevent a self-heating of a torrefied biomass bed.

Page generated in 0.0586 seconds