Nos últimos anos o mundo tem vivenciado uma avalanche de novas tecnologias para auxílio ao diagnóstico médico. Esses esforços buscam um diagnóstico rápido e preciso através de exames e informações sobre a condição física do paciente. Através do uso de imagens médicas, a radiologia busca a visualização de órgãos ou estruturas internas do corpo humano para encontrar respostas às suspeitas de problemas físicos expressos por sinais e sintomas relatados pelo paciente. Nessa área, os Sistemas de Comunicação e Armazenamento de Imagens (PACS) têm ajudado no armazenamento e organização do crescente número de imagens geradas pelos exames realizados nos hospitais. Trabalhos de pesquisa médica têm evidenciado o potencial de uso dessas imagens como auxílio à prática da Medicina Baseada em Casos Similares (MBCS). Por esse motivo, há na literatura um esforço contínuo em desenvolver técnicas computacionais para recuperação de imagens baseada em conteúdos similares (CBIR) em grandes conjuntos de dados. As consultas por similaridade são essenciais para apoiar a prática da MBCS e a descoberta de comportamentos de lesões causadas por diversas doenças. A evolução e intensificação das pesquisas em CBIR têm encontrado vários desafios. Um desses é a divergência entre os resultados obtidos automaticamente e aqueles esperados pelos radiologistas (descontinuidade semântica). Outro desafio é a falta de estudos sobre a viabilidade clínica dessas ferramentas como forma de auxílio ao diagnóstico. Esses obstáculos são dois dos principais responsáveis pela não efetivação dessa tecnologia no ambiente médico-hospitalar. Mediante o exposto acima, este trabalho de pesquisa propõe um mecanismo para contornar essa descontinuidade semântica e ao mesmo tempo aproximar o CBIR do ambiente real de aplicação. A contribuição principal deste trabalho foi o desenvolvimento de uma metodologia baseada em parâmetros perceptuais que aproximam o sistema ao nível de percepção do usuário médico. Em seguida, foi realizado um estudo sobre a viabilidade clínica do sistema CBIR no Hospital das Clínicas de Ribeirão Preto. A metodologia proposta foi aplicada e os resultados comprovaram a aplicabilidade de Sistemas CBIR como ferramenta de auxílio ao diagnóstico em um ambiente clínico real / In recent years the world has experienced an avalanche of new technologies to aid medical diagnosis. These efforts seek a quick and accurate diagnosis through exams and information about the patient\'s physical condition. The radiology studies the visualization of the organs or structures through the use of images. In this area, the Picture Archiving and Communication Systems (PACS) have helped in the storage and organization of the growing number of images generated by exams performed in hospitals. Medical research papers have shown the potential use of these images as an aid to the Similar Case-Based Reasoning (SCBR) practice in Medicine. For this reason, there is an ongoing effort in the literature to develop computational techniques for Content-Based Image Retrieval (CBIR) in large data sets. Similarity queries are essential to support the practice of SCBR. The evolution and intensification of research in CBIR have encountered several challenges. One of these is the discrepancy between the results obtained automatically and those expected by radiologists (semantic gap). Another challenge is the lack of studies on the clinical viability of these tools as a way to assist in diagnosis. These obstacles are the two main responsible for reservation in using this technology in the medical hospital environment. Considering this scenario, this research proposes a mechanism to overcome this semantic gap and bring the real environment to the CBIR application. The main contribution for this research was the development of a methodology based on Perceptual Parameters to approximate the system to the level of user perception. Then we conducted a study on the clinical viability of a CBIR system at the Clinical Hospital of the University of São Paulo at Ribeirão Preto. The proposed methodology was applied and the results showed the applicability of CBIR systems as a computer aided diagnosis tool in a real clinical environment
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-16052014-154931 |
Date | 27 February 2014 |
Creators | Silva, Marcelo Ponciano da |
Contributors | Traina, Agma Juci Machado |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0022 seconds