Return to search

Experimental characterization and modeling of the permeability of fibrous preforms using gas for direct processes application.

A methodology to measure in-plane permeability of fibrous media using a transient one dimensional air flow is developed. The method, based on the measurement of gas pressure at the boundaries throughout the transient flow, is convenient, clean and fast, avoids usage of a gas flow meter and offers a way to study the gas transport within fibrous media. The gas transport through fibrous porous media is described by several models to comply with different flow regimes. The permeability, only depending on the fibrous structure, is determined by inverse method, fitting the simulation results to the experimental data obtained using rising or dropping pressure methods. The results of viscous permeability Kv of Glass/Carbon Twill Woven fabrics (viscous permeability Kv ranging from 10-11 to 10-10 m2) measured using gas match well the permeability measured with liquid compression and injection techniques from previous works. The deviation from Darcy's law caused by gas sliding effect on low permeability Carbon Uni-Directional fabrics (Kv from 10-14 to 10-12 m2) is analyzed and a related parameter of fabric material shows a dependence in permeability, with a similar trend as the Klinkenberg sliding parameter in soils and rocks.The experimental errors due to dimensions, thermal effect, pressure variation, sample handling, and trapped gas at boundaries are analyzed. It comes out that the sensitivities of pressure sensors and trapped gas volumes at the boundaries have the most important effects. A design for 2D measurement using gas to obtain 2D permeability tensor in one single test is proposed to avoid the issues of trapped gas at boundaries. Simulated experiments show that the measurements based on pressure measured at three proposed locations could provide robust and accurate results for fabrics of anisotropic permeability ratios (K1/K2) ranging from 0.1 to 10, with various principal permeability direction orientations.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00848600
Date25 October 2012
CreatorsHou, Yi
PublisherEcole Nationale Supérieure des Mines de Saint-Etienne
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0019 seconds