Return to search

More than a timing resilient template : a case study on reliability-oriented improvements on blade

Submitted by PPG Ci?ncia da Computa??o (ppgcc@pucrs.br) on 2018-05-21T13:19:36Z
No. of bitstreams: 1
FELIPE_AUGUSTO_KUENTZER_TES.pdf: 3277301 bytes, checksum: 7e77c5eb72299302d091329bde56b953 (MD5) / Approved for entry into archive by Sheila Dias (sheila.dias@pucrs.br) on 2018-06-01T12:13:22Z (GMT) No. of bitstreams: 1
FELIPE_AUGUSTO_KUENTZER_TES.pdf: 3277301 bytes, checksum: 7e77c5eb72299302d091329bde56b953 (MD5) / Made available in DSpace on 2018-06-01T12:33:57Z (GMT). No. of bitstreams: 1
FELIPE_AUGUSTO_KUENTZER_TES.pdf: 3277301 bytes, checksum: 7e77c5eb72299302d091329bde56b953 (MD5)
Previous issue date: 2018-03-28 / ? medida que o projeto de VLSI avan?a para tecnologias ultra submicron, as margens
de atraso adicionadas para compensar variabilidades de processo de fabrica??o, temperatura de opera??o e tens?o de alimenta??o, tornam-se uma parte significativa do per?odo de rel?gio em circuitos s?ncronos tradicionais. As arquiteturas resilientes a varia??es de atraso surgiram como uma solu??o promissora para aliviar essas margens de tempo projetadas para o pior caso, melhorando o desempenho do sistema e reduzindo o consumo de energia. Essas arquiteturas incorporam circuitos adicionais para detec??o e recupera??o de viola??es de atraso que podem surgir ao projetar o circuito com margens de tempo menores. Os sistemas ass?ncronos apresentam potencial para melhorar a efici?ncia energ?tica e o desempenho devido ? aus?ncia de um sinal de rel?gio global. Al?m
disso, os circuitos ass?ncronos s?o conhecidos por serem robustos a varia??es de processo, tens?o e temperatura. Blade ? um modelo que incorpora as vantagens de projeto ass?ncrono e resilientes a varia??es de atraso. No entanto, o Blade ainda apresenta desafios em rela??o ? sua testabilidade, o que dificulta sua aplica??o comercial ou em larga escala. Embora o projeto visando testabilidade com Scan seja amplamente utilizado na ind?stria, os altos custos de sil?cio associados com o seu uso no Blade podem ser proibitivos. Por outro lado, os circuitos ass?ncronos podem apresentar vantagens para testes funcionais, enquanto o circuito resiliente fornece feedback cont?nuo durante o funcionamento normal do circuito, uma caracter?stica que pode ser aplicada para testes concorrentes. Nesta Tese, a testabilidade do Blade ? avaliada sob uma perspectiva diferente, onde o circuito implementado com o Blade apresenta propriedades de confiabilidade que podem ser exploradas para testes. Inicialmente, um m?todo de classifica??o de falhas que relaciona padr?es comportamentais com falhas estruturais dentro da l?gica de detec??o de erro e uma nova implementa??o orientada para teste desse m?dulo de detec??o s?o propostos. A parte de controle ? analisada para falhas internas, e um novo projeto ? proposto, onde o teste ? melhorado e o circuito pode ser otimizado pelo
fluxo de projeto. Um m?todo original de medi??o de tempo das linhas de atraso tamb?m ? abordado.
Finalmente, o teste de falhas de atrasos em caminhos cr?ticos do caminho de dados ? explorado como uma consequ?ncia natural de um circuito implementado com Blade, onde o monitoramento cont?nuo para detec??o de viola??es de atraso fornece a informa??o necess?ria para a detec??o concorrente de viola??es que extrapolam a capacidade de recupera??o do circuito resiliente. A integra??o de todas as contribui??es fornece uma cobertura de falha satisfat?ria para um custo de ?rea que, para os circuitos avaliados nesta Tese, pode variar de 4,24% a 6,87%, enquanto que a abordagem Scan para os mesmos circuitos apresenta custo que varia de 50,19% a 112,70% em ?rea, respectivamente.
As contribui??es desta Tese demonstraram que, com algumas melhorias na arquitetura do Blade, ? poss?vel expandir sua confiabilidade para al?m de um sistema de toler?ncia a viola??es de atraso no caminho de dados, e tamb?m um avan?o para teste de falhas (inclusive falhas online) de todo o circuito, bem como melhorar seu rendimento, e lidar com quest?es de envelhecimento. / As the VLSI design moves into ultra-deep-submicron technologies, timing margins added due to variabilities in the manufacturing process, operation temperature and supply voltage become a significant part of the clock period in traditional synchronous circuits. Timing resilient architectures emerged as a promising solution to alleviate these worst-case timing margins, improving system performance and/or reducing energy consumption. These architectures embed additional circuits for detecting and recovering from timing violations that may arise after designing the circuit with reduced time margins. Asynchronous systems, on the other hand, have a potential to improve energy efficiency and performance due to the absence of a global clock. Moreover, asynchronous circuits are known to be robust to process, voltage and temperature variations. Blade is an asynchronous timing resilient template that leverages the advantages of both asynchronous and timing resilient techniques. However, Blade still presents challenges regarding its testability, which hinders its commercial or large-scale application. Although the design for testability with scan chains is widely applied in the industry, the high silicon costs associated with its use in Blade can be prohibitive. Asynchronous circuits can also present advantages for functional testing, and the timing resilient characteristic provides continuous feedback during normal circuit operation, which can be applied for concurrent testing. In this Thesis, Blade?s testability is evaluated from a different perspective, where circuits implemented with Blade present reliability properties that can be explored for stuck-at and delay faults testing. Initially, a fault classification method that relates behavioral patterns with structural faults inside the error detection logic and a new test-driven implementation of this detection module are proposed. The control part is analyzed for internal faults, and a new design is proposed, where the test coverage is improved and the circuit can be further optimized by the design flow. An original method for time measuring delay lines is also addressed. Finally, delay fault testing of critical paths in the data path is explored as a natural consequence of a Blade circuit, where the continuous monitoring for detecting timing violations provide the necessary feedback for online detection of these delay faults. The integration of all the contributions provides a satisfactory fault coverage for an area overhead that, for the evaluated circuits in this thesis, can vary from 4.24% to 6.87%, while the scan approach for the same circuits implies an area overhead varying from 50.19% to 112.70%, respectively. The contributions of this Thesis demonstrated that with a few improvements in the Blade architecture it is possible to expand its reliability beyond a timing resilient system to delay violations in the data path, but also advances for fault testing (including online faults) of the entire circuit, yield, and aging.

Identiferoai:union.ndltd.org:IBICT/oai:tede2.pucrs.br:tede/8093
Date28 March 2018
CreatorsKuentzer, Felipe Augusto
ContributorsAmory, Alexandre de Morais
PublisherPontif?cia Universidade Cat?lica do Rio Grande do Sul, Programa de P?s-Gradua??o em Ci?ncia da Computa??o, PUCRS, Brasil, Escola Polit?cnica
Source SetsIBICT Brazilian ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da PUC_RS, instname:Pontifícia Universidade Católica do Rio Grande do Sul, instacron:PUC_RS
Rightsinfo:eu-repo/semantics/openAccess
Relation1974996533081274470, 500, 500, -862078257083325301

Page generated in 0.0019 seconds