Return to search

Conception de biocathode et implication du fer dans de nouveaux modes de transfert d'électrons / Biocathode design and iron involvement in new electron transfer modes

Les piles à combustible microbiennes (PCMs) sont une technologie convertissant l’énergie chimique stockée dans la matière organique en énergie électrique à l’anode à l’aide de bactéries dites électroactives. A l'inverse des bioanodes, l’intérêt porté aux cathodes biologiques dans les PCMs est récent et ces dernières sont encore peu étudiées. Les objectifs de ces recherches ont donc été d’identifier et de décrire des bactéries ainsi que les mécanismes permettant de catalyser une réduction cathodique notamment celle de l’oxygène. La première partie des travaux portant sur la réalisation d’un criblage pour la formation de biocathodes a révélé l’inefficacité du métabolisme hétérotrophe pour la conception de biocathodes performantes. De ce fait, la suite des travaux a porté sur la bactérie chimiolithoautotrophe acidophile Acidithiobacillus ferrooxidans. Deux mécanismes de transfert d’électrons dépendant du fer ont été mis en évidence générant un courant maximal de -3,8 A.m-2. Nous avons également abordé les mécanismes de transfert d’électrons en milieu neutre chez une bactérie hétérotrophe, Pseudomonas brassicacearum NFM421 bien que peu performante en terme de production de courant. Cette dernière permet une catalyse indirecte de la réduction de l’oxygène à la cathode à pH neutre via un métabolite secondaire le 2,4-diacéthylphloroglucinol associé au fer, mettant encore une fois en lumière l’importance du fer dans le transfert d’électrons. Ce travail a également porté sur la potentielle application des biopiles dans des environnements anthropisés en vue de l’extraction de métaux et plus particulièrement de terre rares qui s’avèrent être une voie de recherche prometteuse. / Microbial fuel cells (MFCs) are devices that convert chemical energy contained in organic matter into electrical energy using electroactive bacteria that act at the anode. Currently, MFCs performances are limited by the use of abiotic cathode. The interest in biological cathode has recently started and less is known about bacterial diversity and mechanism that catalyze cathodic reduction. The aims of the research work are therefor to identify and describe potential bacteria and mechanism involved in such catalysis. The first part of the work is the realization of a screening that did not show conclusive results and might indicate that heterotrophic metabolism was not an efficient choice. Next, Acidithiobacillus ferrooxidans had been used and shown two extracellular electron transfer mechanism depending on iron. A maximum current intensity of -3,8 A.m-2 had been reached. To be close to operational condition of MFC, Pseudomonas brassicacearum NFM 421 has also be use and shown capacity to indirectly catalyze the oxygen reduction at a neutral pH using the 2,4-diacethylphloroglucinol, a secondary metabolite, associated to iron. However, current reach remained weak. Considering difficulty to build efficiant biocathode at a neutral pH, the end of this work had been focused on a new application of the MFC: metal and rare earth extraction from soil and contaminated site that appeared to be a great research opportunity to follow.

Identiferoai:union.ndltd.org:theses.fr/2017AIXM0463
Date21 December 2017
CreatorsChabert, Nicolas
ContributorsAix-Marseille, Achouak, Wafa
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds