Les groupes d'homologie de Floer pour varietes compactes a bord de type contact n'ont pas de correspondant topologique, a la difference des varietes fermees. Le but de cette these est d'en donner des proprietes qualitatives lorsque la variete est munie de structures topologiques supplementaires. Nous avons en vue les fibrations symplectiques (eventuellement triviales). Le premier chapitre de la these comprend deux parties : la premiere compare les differentes constructions de l'homologie de Floer et met en relief le principe specifique aux varietes a bord, a savoir la necessite d'obtenir des estimations a priori sur les solutions de l'equation de Floer. On explique comment les groupes d'homologie de Floer sont relies a la conjecture de Weinstein et on calcule par une methode nouvelle la cohomologie d'une boule dans un espace vectoriel complexe. La deuxieme partie presente une extension de la definition des groupes d'homologie de Floer par des hamiltoniens ``asymptotiquement lineaires", extension que nous utiliserons par la suite. Nous travaillons directement dans des varietes non compactes convexes a l'infini, qui sont des completees symplectiques de varietes compactes a bord de type contact. Le deuxieme chapitre demontre la formule de Kunneth en homologie de Floer pour un produit de varietes a bord de type contact restreint. Ceci correspond au cas d'une fibration triviale. Le troisieme chapitre donne une interpretation de la suite spectrale de Leray-Serre classique en termes exclusifs d'homologie de Morse, qui constitue un modele simple pour l'homologie de Floer. Le quatrieme chapitre etudie l'existence d'une suite spectrale de Leray-Serre pour un certain type de fibrations symplectiques a bord au-dessus d'une base fermee. L'existence de la suite spectrale est etablie pour les fibres en droites hermitiens a courbure negative. Dans le cas general, son existence est ramenee a une estimation d'energie pour trajectoires de Floer, qui est conjecturee.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00005504 |
Date | 18 September 2003 |
Creators | OANCEA, ALEXANDRU |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0039 seconds