<p dir="ltr">Bacterial Wilt, caused by <i>Ralstonia solanacearum</i>, is among the most devastating plant diseases in the world. This pathogen causes significant loss in crops such as tobacco, potato, and tomato. <i>R. solanacearum</i> root infection and xylem colonization determine disease outcome. To date, little is known about the defense mechanism mediated by roots to prevent <i>R. solanacearum</i> vascular colonization during the initial infection stages. Plant early responses are important since they may impact disease outcomes<i>.</i><i> </i>Here, we report the formation of root hairs and primary root growth inhibition in tomato seedlings as <i>Ralstonia</i>-induced phenotypes that depend on tomato genotype and <i>Ralstonia</i> species. The <i>Ralstonia</i>-induced root phenotypes are independent of a functional type III secretion system and exopolysaccharide production (EPS). We also found that <i>R. solanacearum</i><i> </i>K60 infection increased auxin levels throughout the root meristem in wilt-susceptible tomato roots. Our data suggest proper auxin signaling and transport are important for susceptibility to <i>R. solanacearum</i> K60. Blocking auxin transport pharmacologically or genetically led to fewer wilting symptoms, suggesting that auxin is important during early infection stages and disease outcomes in tomato. We previously found that a tomato mutant defective in auxin transport and signaling, known as <i>diageotropica</i> (<i>dgt</i>), has enhanced resistance to <i>R. solanacearum</i> K60. We characterized the resistant response in the <i>dgt</i> mutant, and we found that the resistant response in the <i>dgt</i> mutant may be due to increased lignin content preventing pathogen vasculature colonization. <i>DGT</i> encodes a cyclophilin protein that regulates auxin transport and signaling. Mutations in the cyclophilin DGT promote resistance to <i>R. solanacearum</i> K60. DGT has been reported to regulate auxin transport and signaling. However, the molecular mechanism regarding how DGT mediates these processes is still unknown. We used Yeast Two-Hybrid to identify candidate protein interactors, and we found that SlbZIP1/SlbZIP29, Sl14-3-3, and SlMYB110 may interact with DGT to regulate both development and defense responses. Understanding the role of DGT, auxin, and lignin in defense responses to <i>R. solanacearum</i> K60 in tomato is necessary for Solanaceae crop improvement.</p>
Identifer | oai:union.ndltd.org:purdue.edu/oai:figshare.com:article/24730401 |
Date | 06 December 2023 |
Creators | Katherine Rivera-Zuluaga (17552421) |
Source Sets | Purdue University |
Detected Language | English |
Type | Text, Thesis |
Rights | CC BY 4.0 |
Relation | https://figshare.com/articles/thesis/EXPLORING_THE_MOLECULAR_MECHANISM_OF_ROOT-MEDIATED_RESPONSES_TO_i_RALSTONIA_i_/24730401 |
Page generated in 0.0247 seconds