Return to search

Assimilation de données: les propriétés asymptotiques du filtre de Kalman d'ensemble

Cette thèse porte sur les méthodes d'assimilation de données, qui consistent à combiner des informations provenant d'un modèle dynamique avec des observations. Nous présentons des méthodes d'assimilation les plus connues: l'interpolation statistique, les méthodes variationnelles d'assimilation de données et les méthodes séquentielles d'assimilation de données. Nous nous intéressons particulièrement au filtre de Kalman d'ensemble qui est de plus en plus utilisé dans les applications océanographiques. Le filtre de Kalman d'ensemble a été proposé initialement comme une approximation du filtre de Kalman pour les modèles linéaires gaussiens de grande dimension, il a ensuite été étendu au cas du modèle non linéaire gaussien. Il existe très peu de résultats théoriques sur les propriétés asymptotiques du filtre de Kalman d'ensemble, alors qu'il est connu que le filtre particulaire converge vers le filtre bayésien optimal quand le nombre de particules tend vers l'infini. Nous démontrons dans cette thèse que, quand le nombre d'éléments tend vers l'infini, dans le cas où la fonction du modèle dynamique est continue et localement lipschitzienne avec un accroissement au plus polynomial à l'infini, les éléments du filtre de Kalman d'ensemble convergent vers les éléments indépendants et identiquement distribués selon une loi qui diffère de la loi a posteriori du filtre bayésien optimal dans le cas général. Dans le cas du modèle linéaire gaussien, cette loi asymptotique n'est autre que la loi a posteriori du filtre de Kalman. Nous présentons aussi des résultats de simulations du filtre de Kalman d'ensemble et du filtre particulaire sur un modèle linéaire gaussien simple et sur le modèle de Lorenz afin de comparer la performance des deux filtres à l'asymptotique et aussi dans le cas où le nombre d'éléments d'ensemble est faible.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00412447
Date29 June 2009
CreatorsTran, Vu Duc
PublisherUniversité de Bretagne Sud
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0019 seconds