On s'intéresse à l'écoulement d'un mélange d'eau et d'huile dans une matrice poreuse supposée hétérogène, et plus particulièrement apposition de différentes sous-matrices poreuses supposées homogènes. Si la modélisation et l'analyse des écoulements diphasiques dans des milieux poreux homogènes a fait l'objet de nombreuses études préalables, ce travail s'intéresse aux phénomènes liés aux forces provenant de la pression capillaire au niveau des interfaces entre des milieux différents.<br />Dans un premier temps, on suppose que l'on peut connecter les pressions au niveau des interfaces. Cela nécessite des hypothèses sur les profils de pression capillaire, afin que les raccords soient possibles. On démontre l'existence d'une solution faible du problème parabolique dégénéré obtenu par convergence d'une famille de solutions approchées obtenues à l'aide d'un schéma Volumes Finis. L'unicité est garantie, sous hypothèse sur les dégénérescence, par une méthode de dédoublement de variable aboutissant à un principe de contraction $L^1$.<br />La modélisation ne garantit pas forcément que le raccord des pressions capillaires aux interfaces soit possible. Dans le chapitre 3, on donne une condition de raccord graphique des pressions capillaires aux interfaces qui permet de traiter des cas beaucoup plus généraux. On montre que de le problème avec raccords graphiques admet une solution. Un résultat d'unicité et de contraction $L^1$ est donné dans le cas unidimensionnel.<br />Dans le chapitre 4, on montre la convergence d'une approximation Volumes Finis vers l'unique solution du problème unidimensionnel. Ce résultat utilise une borne uniforme sur les flux discrets, analogie discrète de la preuve dans le cas continue faite au chapitre précédent.<br />On étudie dans les chapitres 5 et 6 la limite des solutions lorsque la dépendance de la pression capillaire par rapport à l'inconnue saturation devient très faible, et que la pression capillaire ne dépend plus que du sous milieux poreux homogène. Il apparaît alors des phénomènes différents selon l'orientation des forces de gravité et de capillarité. Soit la solution su problème est la solution entropique d'une équation hyperbolique à flux discontinus, soit une solution faible, entropique à l'intérieur des sous-domaines homogènes, et laissant apparaître un choc non classique à l'interface.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00335506 |
Date | 03 October 2008 |
Creators | Cancès, Clément |
Publisher | Université de Provence - Aix-Marseille I |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds