In 21 century finned surfaces are used in almost all condensers to enhance their heat transfer capabilities. A lot of different models are presented in the literature: on horizontal and vertical finned tubes, inside finned tubes. The validation method of the theoretical models is based on comparison between measurement of average heat transfer coefficient and one calculated by the model. But in this case it is impossible to validate all approaches made in the theory.
The presented work aims to understand the real relation between assumptions made in the theory and flow of the condensate film along a fin. Therefore a comprehensive investigation of the film condensation phenomena on curvilinear surfaces has been done.
This investigation has been done in the framework of the preparation of “SAFIR” and “EMERALD” space experiments aboard International Space Station. A special attention has been given to clarify some technical and technological problems that could eventually have a positive feedback for industrial applications.
The model of the fin shape optimization has been developed. It takes into account surface tension forces and finite heat conductivity of the fin material. Developed model allows to significantly increase the condensate outflow as compared with the case of the optimal isothermal fin shape at the finite heat transfer conductivity. Enhancement coefficient increases with fin heat conductivity decreasing.
The experimental and theoretical investigation of film condensation on a disk-shaped fin has been done under groun condition. 3D condensation model at different gravity levels has been developed. This model allows to reveal the area of dominant influence of surface tension forces. First prototype of experimental cell for the space experiments has been developed and tested. The temperature distribution along the curvilinear fin surface has been measured. The measurements of the film thickness at the fin top shows that the film thickness does not equal to zero as was assumed in some previous theoretical models. Developed model is in a good agreement with experimental results. In the ground set-up the measurement techniques as in future space experiments were realized: local temperature measurement of the fin surface, measurement of non-condensable gas mole fraction, optical system for local film thickness measurement and system of average heat transfer coefficient measurement. Experimental results approve the usefulness of these systems.
Optical system based on schlieren technique for film surface deformation has been investigated and developed. This system was used for the investigation of shear driven liquid film on the mirror like substrate under microgravity condition. The microgravity condition was simulated during ESA Parabolic Flight Campaign of October-November 2009. The experimental results show the high capabilities of this system.
In the framework of the space experiments preparation the analysis of appropriate liquid has been done. Three candidates have been compared: Water, Ethyl alcohol and FC-72. Third liquid has been chosen as applicable liquid for the “SAFIR” and “EMERALD” experiments. The optimal fin shapes and film thickness distribution have been calculated for the working liquid. Using obtained results requirements for space experiments have been prepared.
Identifer | oai:union.ndltd.org:BICfB/oai:ulb.ac.be:ETDULB:ULBetd-10312010-145915 |
Date | 29 October 2010 |
Creators | Glushchuk, Andrey |
Contributors | BARTIK Kristin, GONCHAROVA Olga, COLINET Pierre, CARATI Daniele, KABOV Oleg, LEGROS Jean-Claude, DUBOIS Frank |
Publisher | Universite Libre de Bruxelles |
Source Sets | Bibliothèque interuniversitaire de la Communauté française de Belgique |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-10312010-145915/ |
Rights | restricted, J'accepte que le texte de la thèse (ci-après l'oeuvre), sous réserve des parties couvertes par la confidentialité, soit publié dans le recueil électronique des thèses ULB. A cette fin, je donne licence à ULB : - le droit de fixer et de reproduire l'oeuvre sur support électronique : logiciel ETD/db - le droit de communiquer l'oeuvre au public Cette licence, gratuite et non exclusive, est valable pour toute la durée de la propriété littéraire et artistique, y compris ses éventuelles prolongations, et pour le monde entier. Je conserve tous les autres droits pour la reproduction et la communication de la thèse, ainsi que le droit de l'utiliser dans de futurs travaux. Je certifie avoir obtenu, conformément à la législation sur le droit d'auteur et aux exigences du droit à l'image, toutes les autorisations nécessaires à la reproduction dans ma thèse d'images, de textes, et/ou de toute oeuvre protégés par le droit d'auteur, et avoir obtenu les autorisations nécessaires à leur communication à des tiers. Au cas où un tiers est titulaire d'un droit de propriété intellectuelle sur tout ou partie de ma thèse, je certifie avoir obtenu son autorisation écrite pour l'exercice des droits mentionnés ci-dessus. |
Page generated in 0.0025 seconds