This thesis describes a method to generate new trajectories based on historic positiondata for a given geographical area. The thesis uses AIS-data from fishing boats to first describe a method that uses DBSCAN and OPTICS algorithms to cluster the data into clustersbased on routes where the boats travel and areas where the boats fish.Here bayesian optimization has been utilized to search for parameters for the clusteringalgorithms. In this given scenario it was shown DBSCAN is better in all fields, but it hasmany points where OPTICS has the potential to become better if it was modified a bit.This is followed by a method describing how to take the clusters and build a nodenetwork that then can be traversed using a path finding algorithm combined with internalrules to generate new routes that can be used in simulations to give a realistic enoughsituation picture. Finally a method to evaluate these generated routes are described andused to compare the routes to each other
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-187021 |
Date | January 2022 |
Creators | Bergman, Oscar |
Publisher | Linköpings universitet, Artificiell intelligens och integrerade datorsystem |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0025 seconds