Return to search

Atomistic simulation of fatigue in face centred cubic metals / Simulation atomistique de la fatigue dans les métaux cubiques à faces centrées

La fatigue induite par chargement cyclique est un mode d'endommagement majeur des métaux. Elle se caractérise par des effets environnementaux et de grandes dispersions de la durée de vie qui doivent être mieux comprises. Les matériaux analysés sont de type cfc : aluminium, cuivre, nickel et argent. Le comportement de marches naturellement créées en surface par le glissement cyclique de dislocations est examiné par simulations en dynamique moléculaire sous vide et sous environnement oxygène pour le cuivre et le nickel. Un phénomène de reconstruction est observé sur les marches en surface, qui peut induire une forte irréversibilité. Trois mécanismes de reconstruction des marches apparues en surface sont observés et décrits. L’irréversibilité de ces marches est ensuite analysé. Elles sont irréversibles pour des chargements expérimentaux, sauf arrivée de dislocations de signe opposé sur un plan de glissement directement voisin.Avec arrivée de dislocations sur des plans non voisins, l'irréversibilité s’accumule cycle par cycle et il est possible de reproduire l’apparition de fissures en surface dont la profondeur augmente graduellement.Un environnement oxygène modifie la surface (début d’oxydation) mais pas l’irréversibilité parce que l’oxygène n’a pas d'influence majeure sur les différents mécanismes liés à l’évolution du relief.Une estimation grossière de l'irréversibilité est faite pour des dislocations coin pures dans une bande de glissement persistante pour les matériaux dits ondulés. On obtient un facteur d’irréversibilité entre 0,5 et 0,75 pour le cuivre, sous vide et sous l’environnement oxygène, en accord avec des mesures récentes en microscopie à force atomique.La propagation de fissures est simulée en environnement inerte. Les fissures peuvent se propager à cause de l'irréversibilité des dislocations générées, liée à leurs interactions allant jusqu’à la création de jonctions. / Fatigue is one of the major damage mechanisms of metals. It is characterized by strong environmental effects and wide lifetime dispersions which must be better understood. Different face centred cubic metals, Al, Cu, Ni, and Ag are analyzed. The mechanical behaviour of surface steps naturally created by the glide of dislocations subjected to cyclic loading is examined using molecular dynamics simulations in vacuum and in air for Cu and Ni. An atomistic reconstruction phenomenon is observed at these surface steps which can induce strong irreversibility. Three different mechanisms of reconstruction are defined. Surface slip irreversibility under cyclic loading is analyzed. All surface steps are intrinsically irreversible under usual fatigue laboratory loading amplitude without the arrival of opposite sign dislocations on direct neighbor plane.With opposite sign dislocations on non direct neighbour planes, irreversibility cumulates cycle by cycle and a micro-notch is produced whose depth gradually increases.Oxygen environment affects the surface (first stage of oxidation) but does not lead to higher irreversibility as it has no major influence on the different mechanisms linked to surface relief evolution.A rough estimation of surface irreversibility is carried out for pure edge dislocations in persistent slip bands in so-called wavy materials. It gives an irreversibility fraction between 0.5 and 0.75 in copper in vacuum and in air, in agreement with recent atomic force microscopy measurements.Crack propagation mechanisms are simulated in inert environment. Cracks can propagate owing to the irreversibility of generated dislocations because of their mutual interactions up to the formation of dislocation junctions.

Identiferoai:union.ndltd.org:theses.fr/2016SACLX076
Date18 November 2016
CreatorsFan, Zhengxuan
ContributorsUniversité Paris-Saclay (ComUE), Hardouin Duparc, Olivier, Sauzay, Maxime
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0031 seconds