Return to search

Flame Spread on Composite Materials for use in High Speed Craft

"The use of advanced materials in the construction of high-speed craft is becoming more commonplace. However, there are certain requirements set in the High Speed Craft Code (published by IMO) that restrict the use of materials based on results from full scale room fire testing (ISO 9705). An obvious benefit would be gained by simulating the results of these full-scale tests using bench scale data from the Cone Calorimeter and LIFT apparatus. A flame-spread algorithm developed by Henri Mitler at the National Institute of Standards and Technology was selected for implementation into the zone fire model CFAST. This algorithm was modified from its original form, so that it could simulate flame spread on wall/ceiling lining materials for both sidewall and corner scenarios, including ISO 9705 as prescribed in the High Speed Craft Code. Changes to the algorithm included geometry of flame spread across the ceiling, flame height, radiation exchange, ignition burner heat flux maps, and multiple pyrolysis zones. The new flame spread algorithm was evaluated against room corner test data from four different marine composite materials tested per ISO 9705."

Identiferoai:union.ndltd.org:wpi.edu/oai:digitalcommons.wpi.edu:etd-theses-2076
Date05 November 1999
CreatorsWright, Mark T.
ContributorsJason Averill, Reader, Nicholas A. Dembsey, Committee Member, David A. Lucht, Department Head, Jonathan R. Barnett, Advisor
PublisherDigital WPI
Source SetsWorcester Polytechnic Institute
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses (All Theses, All Years)

Page generated in 0.0016 seconds