Return to search

Improved architectures for a fused floating-point add-subtract unit

This report presents improved architecture designs and implementations for a fused floating-point add-subtract unit. The fused floating-point add-subtract unit is useful for DSP applications such as FFT and DCT butterfly operations. To improve the performance of the fused floating-point add-subtract unit, the dual path algorithm and pipelining technique are applied. The proposed designs are implemented for both single and double precision and synthesized with a 45nm standard-cell library. The fused floating-point add-subtract unit saves 40% of the area and power consumption and the dual path fused floating-point add-subtract unit reduces the latency by 30% compared to the traditional discrete floating-point add-subtract unit. By combining fused operation and the dual path design, the proposed floating-point add-subtract unit achieves low area, low power consumption and high speed. Based on the data flow analysis, the proposed fused floating-point add-subtract unit is split into two pipeline stages. Since the latencies of two pipeline stages are fairly well balanced the throughput of the entire logic is increased by 80% compared to the non-pipelined implementation. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2011-12-4722
Date27 February 2012
CreatorsSohn, Jongwook
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
Typethesis
Formatapplication/pdf

Page generated in 0.002 seconds